Effects of denitrification on the distributions of trace gas abundances in the polar regions: a comparison of WACCM with observations
-
Published:2023-06-21
Issue:12
Volume:23
Page:6849-6861
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Weimer MichaelORCID, Kinnison Douglas E.ORCID, Wilka CatherineORCID, Solomon SusanORCID
Abstract
Abstract. Polar stratospheric clouds (PSCs) play a key role in the polar chemistry of the stratosphere. Nitric acid trihydrate (NAT) particles have been shown to lead to denitrification of the lower stratosphere. While the existence of large NAT particles (NAT “rocks”) has been verified by many measurements, especially in the Northern Hemisphere (NH), most current chemistry–climate models use simplified parameterizations, often based on evaluations in the Southern Hemisphere where the polar vortex is stable enough that accounting for NAT rocks is not as important as in the NH. Here, we evaluate the probability density functions of various gaseous species in the polar vortex using one such model, the Whole Atmosphere Community Climate Model (WACCM), and compare these with measurements by the Michelson Interferometer for Passive Atmospheric Sounding onboard the Environmental Satellite (MIPAS/Envisat) and two ozonesonde stations for a range of years and in both hemispheres. Using the maximum difference between the distributions of MIPAS and WACCM as a measure of coherence, we find better agreement for HNO3 when reducing the NAT number density from the standard value of 10−2 used in this model to 5×10-4 cm−3 for almost all spring seasons during the MIPAS period in both hemispheres. The distributions of ClONO2 and O3 are not greatly affected by the NAT density. The average difference between WACCM and ozonesondes supports the need to reduce the NAT number density in the model. Therefore, this study suggests using a NAT number density of 5×10-4 cm−3 for future simulations with WACCM.
Funder
National Aeronautics and Space Administration National Science Foundation
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference65 articles.
1. Adriani, A., Massoli, P., Di Donfrancesco, G., Cairo, F., Moriconi, M. L., and Snels, M.: Climatology of polar stratospheric clouds based on lidar
observations from 1993 to 2001 over McMurdo Station, Antarctica, J. Geophys.
Res.-Atmos., 109, 1–17, https://doi.org/10.1029/2004JD004800, 2004. a 2. Carslaw, K. S., Luo, B. P., Clegg, S. L., Peter, T., Brimblecombe, P., and
Crutzen, P. J.: Stratospheric aerosol growth and HNO3 gas phase depletion
from coupled HNO3 and water uptake by liquid particles, Geophys. Res. Lett.,
21, 2479–2482, https://doi.org/10.1029/94GL02799, 1994. a 3. Carslaw, K. S., Wirth, M., Tsias, A., Luo, B. P., Dörnbrack, A., Leutbecher,
M., Volkert, H., Renger, W., Bacmeister, J. T., and Peter, T.: Particle
microphysics and chemistry in remotely observed mountain polar stratospheric
clouds, J. Geophys. Res.-Atmos., 103, 5785–5796, https://doi.org/10.1029/97JD03626, 1998. a 4. Carslaw, K. S., Kettleborough, J. A., Northway, M. J., Davies, S., Gao, R.-S., Fahey, D. W., Baumgardner, D. G., Chipperfield, M. P., and Kleinböhl, A.: A vortex-scale simulation of the growth and sedimentation of large nitric acid hydrate particles, J. Geophys. Res.-Atmos., 107, SOL 43-1–SOL 43-16,
https://doi.org/10.1029/2001JD000467, 2002. a 5. Computational and Information Systems Laboratory: Cheyenne: HPE/SGI ICE XA
System (University Community Computing), Tech. rep., National Center for
Atmospheric Research, Boulder, CO, https://doi.org/10.5065/D6RX99HX, 2019. a
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|