AIRS and MODIS Satellite-Based Assessment of Air Pollution in Southwestern China: Impact of Stratospheric Intrusions and Cross-Border Transport of Biomass Burning

Author:

Lian Puyu1,Zhao Kaihui2ORCID,Yuan Zibing1ORCID

Affiliation:

1. School of Environment and Energy, South China University of Technology, Guangzhou 510006, China

2. Yunnan Key Laboratory of Meteorological Disasters and Climate Resources in the Greater Mekong Subregion, Yunnan University, Kunming 650091, China

Abstract

The exacerbation of air pollution during spring in Yunnan province, China, has attracted widespread attention. However, many studies have focused solely on the impacts of anthropogenic emissions while ignoring the role of natural processes. This study used satellite data spanning 21 years from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) to reveal two natural processes closely related to springtime ozone (O3) and PM2.5 pollution: stratospheric intrusions (SIs) and cross-border transport of biomass burning (BB). We aimed to assess the mechanisms through which SIs and cross-border BB transport influence O3 and PM2.5 pollution in Southwestern China during the spring. The unique geographical conditions and prevalent southwest winds are considered the key driving factors for SIs and cross-border BB transport. Frequent tropopause folding provides favorable dynamic conditions for SIs in the upper troposphere. In the lower troposphere, the distribution patterns of O3 and stratospheric O3 tracer (O3S) are similar to the terrain, indicating that O3 is more likely to reach the surface with increasing altitude. Using stratospheric tracer tagging methods, we quantified the contributions of SIs to surface O3, ranging from 6 to 31 ppbv and accounting for 10–38% of surface O3 levels. Additionally, as Yunnan is located downwind of Myanmar and has complex terrain, it provides favorable conditions for PM2.5 and O3 generation from cross-border BB transport. The decreasing terrain distribution from north to south in Yunnan facilitates PM2.5 transport to lower-elevation border cities, whereas higher-elevation cities hinder PM2.5 transport, leading to spatial heterogeneity in PM2.5. This study provides scientific support for elucidating the two key processes governing springtime PM2.5 and O3 pollution in Yunnan, SIs and cross-border BB transport, and can assist policymakers in formulating optimal emission reduction strategies.

Funder

National Natural Science Foundation of China

The Key-Area Research and Development Program of Guangdong Province

The Open Research Fund Program of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province

Yunnan Science and Technology Department Youth Project

Guangdong Basic and Applied Basic Research Foundation

Xianyang key research and development program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3