Calibration of radar differential reflectivity using quasi-vertical profiles

Author:

Sanchez-Rivas DanielORCID,Rico-Ramirez Miguel A.ORCID

Abstract

Abstract. Accurate precipitation estimation with weather radars is essential for hydrological and meteorological applications. The differential reflectivity (ZDR) is a crucial weather radar measurement that helps to improve quantitative precipitation estimates using polarimetric weather radars. However, a system bias between the horizontal and vertical channels generated by the radar produces an offset in ZDR. Existing methods to calibrate ZDR measurements rely on the intrinsic values of the ZDR of natural targets (e.g. drizzle or dry snow) collected at high elevation angles (e.g. higher than 40∘ or even at 90∘), in which ZDR values close to 0 dB are expected. However, not all weather radar systems can scan at such high elevation angles or point the antenna vertically to collect precipitation measurements passing overhead. Therefore, there is a need to develop new methods to calibrate ZDR measurements using lower-elevation scans. In this work, we present and analyse a novel method for correcting and monitoring the ZDR offset using quasi-vertical profiles computed from scans collected at 9∘ elevations. The method is applied to radar data collected through 1 year of precipitation events by two operational C-band polarimetric weather radars in the UK. The proposed method shows a relative error of 0.1 dB when evaluated against the traditional approach based on ZDR measurements collected at 90∘ elevations. Additionally, the method is independently assessed using disdrometers located near the radar sites. The results showed a reasonable agreement between disdrometer-derived and radar-calibrated ZDR measurements.

Funder

Consejo Nacional de Ciencia y Tecnología

Engineering and Physical Sciences Research Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3