Melting Layer Detection and Characterization based on Range Height Indicator–Quasi Vertical Profiles

Author:

Allabakash ShaikORCID,Lim SanghunORCID,Jang Bong-Joo

Abstract

The melting layer (ML) is an important region used to describe the transition of hydrometeors from the solid to the liquid phase. It is a typical feature used to characterize the vertical structure of the stratiform precipitation. The present study implements a new automatic melting-layer detection algorithm based on the range-height-indicator–quasi-vertical profile (R-QVP) in the X-band dual-polarization radars. The algorithm uses the gradients of the polarimetric radar variables reflectivity factor at horizontal polarization (Zh), differential reflectivity (Zdr), and copolar correlation coefficient (ρhv), and their combinations to describe the ML characteristics. The melting layer heights derived from the radar were compared and validated with the heights of the 0 °C wet-bulb temperature derived from the Modern-Era retrospective analysis for research and applications (MERRA) reanalysis datasets and obtained high correlation coefficient 0.96. The R-QVP combined with this algorithm led to spatial and temporal variabilities of the melting layer thickness. The thickness of the melting layer was independent of the seasonal, spatial, and temporal variabilities of the precipitations. Intriguing polarimetric signatures have been observed inside, above, and below the ML, based on the phase of the precipitation particles. The statistics of the polarimetric variables were evaluated for ML, rain, and snow. Further, the linkage between enhanced specific differential phase shift (Kdp) and Zdr in the dendritic growth layer (DGL) and surface precipitation was also described.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3