Underlying Microphysical Processes in the Melting Layer during Moderate Precipitation: Evidence from Ground-Based Data

Author:

Fujiyoshi Yasushi1

Affiliation:

1. a Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan

Abstract

Abstract We performed a detailed analysis of ground-based data to investigate changes in the morphological properties and particle size distribution of precipitation particles as they fall through the melting layer (ML). In July 2013, we started continuous precipitation monitoring in Sapporo (Japan) with a two-dimensional video disdrometer, an electrical balance–type snow gauge, and an X-band marine radar. We used data collected from 0943 to 1040 Japan standard time (JST) 10 March 2015 for analysis, when the bright band progressively descended to the ground surface and precipitation intensity was moderate and approximately steady (∼10 mm h−1). We found that the aggregation of aggregates in the upper half of the ML did not necessarily result in large raindrops. Almost all of the snow particles with a melted diameter (Dm) ≥ 4 mm broke up before they melted into raindrops of equivalent size. The apparent one-to-one relationship between melting snow particles and raindrops held for particles with 2 < Dm < 3 mm. Most small raindrops were generated by the successive breakup of melting particles in the lower half of the ML.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference119 articles.

1. Melting layer detection and characterization based on range height indicator–quasi vertical profiles;Allabakash, S.,2019

2. Doppler radar characteristics of precipitation at vertical incidence;Atlas, D.,1973

3. Size distribution of hydrometeors through the melting layer;Barthazy, E.,1998

4. A new model of the equilibrium shape of raindrops;Beard, K. V.,1987

5. On distinguishing snowfall from rainfall using near‐surface atmospheric information: Comparative analysis, uncertainties and hydrologic importance;Behrangi, A.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3