First results on a process-oriented rain area classification technique using Meteosat Second Generation SEVIRI nighttime data

Author:

Thies B.,Nauss T.,Bendix J.

Abstract

Abstract. A new technique for process-oriented rain area classification using Meteosat Second Generation SEVIRI nighttime data is introduced. It is based on a combination of the Advective Convective Technique (ACT) which focuses on precipitation areas connected to convective processes and the Rain Area Delineation Scheme during Nighttime (RADS-N) a new technique for the improved detection of stratiform precipitation areas (e.g. in connection with mid-latitude frontal systems). The ACT which uses positive brightness temperature differences between the water vapour (WV) and the infrared (IR) channels (ΔTWV-IR) for the detection of convective clouds and connected precipitating clouds has been transferred from Meteosat First Generation (MFG) Metesoat Visible and Infra-Red Imager radiometer (MVIRI) to Meteosat Second Generation (MSG) Spinning Enhanced Visible and InfraRed Imager (SEVIRI). RADS-N is based on the new conceptual model that precipitating cloud areas are characterised by a large cloud water path (cwp) and the presence of ice particles in the upper part of the cloud. The technique considers information about both parameters inherent in the channel differences ΔT3.9-10.8, ΔT3.9-7.3, ΔT8.7-10.8, and ΔT10.8-12.1, to detect potentially precipitating cloud areas. All four channel differences are used to gain implicit knowledge about the cwp. ΔT8.7-10.8 and ΔT10.8-12.1 are additionally considered to gain information about the cloud phase. First results of a comparison study between the classified rain areas and corresponding ground based radar data for precipitation events in connection with a cold front occlusion show encouraging performance of the new proposed process-oriented rain area classification scheme.

Publisher

Copernicus GmbH

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3