Abstract
Commercial microwave link (MWL) used by mobile telecom operators for data transmission can provide hydro-meteorologically valid rainfall estimates according to studies in the past decade. For the first time, this study investigated a new method, the MSG technique, that uses Meteosat Second Generation (MSG) satellite data to improve MWL rainfall estimates. The investigation, conducted during daytime, used MSG optical (VIS0.6) and near IR (NIR1.6) data to estimate rain areas along a 15 GHz, 9.88 km MWL for classifying the MWL signal into wet–dry periods and estimate the baseline level. Additionally, the MSG technique estimated a new parameter, wet path length, representing the length of the MWL that was wet during wet periods. Finally, MWL rainfall intensity estimates from this new MSG and conventional techniques were compared to rain gauge estimates. The results show that the MSG technique is robust and can estimate gauge comparable rainfall estimates. The evaluation scores every three hours of RMSD, relative bias, and r2 based on the entire evaluation period results of the MSG technique were 2.61 mm h−1, 0.47, and 0.81, compared to 2.09 mm h−1, 0.04, and 0.84 of the conventional technique, respectively. For convective rain events with high intensity spatially varying rainfall, the results show that the MSG technique may approximate the actual mean rainfall estimates better than the conventional technique.
Subject
General Earth and Planetary Sciences
Reference44 articles.
1. Microwave Link: Gigabit Microwave Connectivityhttps://www.microwave-link.com/
2. Ericsson Microwave towards 2020: Delivering High-Capacity and Cost-Efficient Backhaul for Broadband Networks Today and in the Future,2015
3. Ericsson Microwave Outlook;Edstam,2018
4. Hydrometeorological application of a microwave link: 2. Precipitation
5. Environmental Monitoring by Wireless Communication Networks
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献