Performance characterization of low-cost air quality sensors for off-grid deployment in rural Malawi

Author:

Bittner Ashley S.ORCID,Cross Eben S.,Hagan David H.,Malings CarlORCID,Lipsky Eric,Grieshop Andrew P.ORCID

Abstract

Abstract. Low-cost gas and particulate matter sensor packages offer a compact, lightweight, and easily transportable solution to address global gaps in air quality (AQ) observations. However, regions that would benefit most from widespread deployment of low-cost AQ monitors often lack the reference-grade equipment required to reliably calibrate and validate them. In this study, we explore approaches to calibrating and validating three integrated sensor packages before a 1-year deployment to rural Malawi using colocation data collected at a regulatory site in North Carolina, USA. We compare the performance of five computational modeling approaches to calibrate the electrochemical gas sensors: k-nearest neighbors (kNN) hybrid, random forest (RF) hybrid, high-dimensional model representation (HDMR), multilinear regression (MLR), and quadratic regression (QR). For the CO, Ox, NO, and NO2 sensors, we found that kNN hybrid models returned the highest coefficients of determination and lowest error metrics when validated. Hybrid models were also the most transferable approach when applied to deployment data collected in Malawi. We compared kNN hybrid calibrated CO observations from two regions in Malawi to remote sensing data and found qualitative agreement in spatial and annual trends. However, ARISense monthly mean surface observations were 2 to 4 times higher than the remote sensing data, partly due to proximity to residential biomass combustion activity not resolved by satellite imaging. We also compared the performance of the integrated Alphasense OPC-N2 optical particle counter to a filter-corrected nephelometer using colocation data collected at one of our deployment sites in Malawi. We found the performance of the OPC-N2 varied widely with environmental conditions, with the worst performance associated with high relative humidity (RH >70 %) conditions and influence from emissions from nearby residential biomass combustion. We did not find obvious evidence of systematic sensor performance decay after the 1-year deployment to Malawi. Data recovery (30 %–80 %) varied by sensor and season and was limited by insufficient power and access to resources at the remote deployment sites. Future low-cost sensor deployments to rural, low-income settings would benefit from adaptable power systems, standardized sensor calibration methodologies, and increased regional regulatory-grade monitoring infrastructure.

Funder

National Science Foundation

U.S. Environmental Protection Agency

Heinz Endowments

Agence Nationale de la Recherche

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3