Cloud phase and macrophysical properties over the Southern Ocean during the MARCUS field campaign

Author:

Xi BaikeORCID,Dong Xiquan,Zheng XiaojianORCID,Wu PengORCID

Abstract

Abstract. To investigate the cloud phase and macrophysical properties over the Southern Ocean (SO), the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) was installed on the Australian icebreaker research vessel (R/V) Aurora Australis during the Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (MARCUS) field campaign (41 to 69∘ S, 60 to 160∘ E) from October 2017 to March 2018. To examine cloud properties over the midlatitude and polar regions, the study domain is separated into the northern (NSO) and southern (SSO) parts of the SO, with a demarcation line of 60∘ S. The total cloud fractions (CFs) were 77.9 %, 67.6 %, and 90.3 % for the entire domain, NSO and SSO, respectively, indicating that higher CFs were observed in the polar region. Low-level clouds and deep convective clouds are the two most common cloud types over the SO. A new method was developed to classify liquid, mixed-phase, and ice clouds in single-layered, low-level clouds (LOW), where mixed-phase clouds dominate with an occurrence frequency (Freq) of 54.5 %, while the Freqs of the liquid and ice clouds were 10.1 % (most drizzling) and 17.4 % (least drizzling). The meridional distributions of low-level cloud boundaries are nearly independent of latitude, whereas the cloud temperatures increased by ∼8 K, and atmospheric precipitable water vapor increased from ∼5 mm at 69∘ S to ∼18 mm at 43∘ S. The mean cloud liquid water paths over NSO were much larger than those over SSO. Most liquid clouds occurred over NSO, with very few over SSO, whereas more mixed-phase clouds occurred over SSO than over NSO. There were no significant differences for the ice cloud Freq between NSO and SSO. The ice particle sizes are comparable to cloud droplets and drizzle drops and well mixed in the cloud layer. These results will be valuable for advancing our understanding of the meridional and vertical distributions of clouds and can be used to improve model simulations over the SO.

Funder

National Science Foundation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3