On the derivation of zonal and meridional wind components from Aeolus horizontal line-of-sight wind
-
Published:2022-06-10
Issue:11
Volume:15
Page:3465-3479
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Krisch IsabellORCID, Hindley Neil P.ORCID, Reitebuch OliverORCID, Wright Corwin J.
Abstract
Abstract. Since its launch in 2018, the European Space Agency's
Earth Explorer satellite Aeolus has provided global height resolved
measurements of horizontal wind in the troposphere and lower stratosphere
for the first time. Novel datasets such as these provide an unprecedented
opportunity for the research of atmospheric dynamics and provide new
insights into the dynamics of the upper troposphere and lower stratosphere
(UTLS) region. Aeolus measures the wind component along its horizontal
line-of-sight, but for the analysis and interpretation of atmospheric
dynamics, zonal and/or meridional wind components are most useful. In this
paper, we introduce and compare three different methods to derive zonal and
meridional wind components from the Aeolus wind measurements. We find that
the most promising method involves combining Aeolus measurements during
ascending and descending orbits. Using this method, we derive global
estimates of the zonal wind in the latitude range 79.7∘ S to
84.5∘ N with errors of less than 5 m s−1 (at the 2σ
level). Due to the orbit geometry of Aeolus, the estimation of meridional
wind in the tropics and at midlatitudes is more challenging and the quality
is less reliable. However, we find that it is possible to derive meridional
winds poleward of 70∘ latitude with absolute errors typically
below 5 m s−1 (at the 2σ level). This further demonstrates the value of Aeolus wind measurements for applications in weather and climate research, in addition to their important role in numerical weather
prediction.
Funder
European Space Agency Bundesministerium für Bildung und Forschung Royal Society Natural Environment Research Council
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference31 articles.
1. Andersson, E.: Statement of Guidance for Global Numerical Weather Prediction (NWP), World Meteorological Society, https://docplayer.net/194586713-Statement-of-guidance-for-global-numerical-weather-prediction-nwp.html
(last access: 11 August 2021), 2018. 2. Baker, W. E., Atlas, R., Cardinali, C., Clement, A., Emmitt, G. D., Gentry,
B. M., Hardesty, R. M., Källén, E., Kavaya, M. J., Langland, R., Ma,
Z., Masutani, M., McCarty, W., Pierce, R. B., Pu, Z., Riishojgaard, L. P.,
Ryan, J., Tucker, S., Weissmann, M., and Yoe, J. G.: Lidar-Measured Wind
Profiles: The Missing Link in the Global Observing System, B.
Am. Meteorol. Soc., 95, 543–564, https://doi.org/10.1175/BAMS-D-12-00164.1, 2014. 3. Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H.,
Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T.,
A. Jones, D. B., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi,
M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229, https://doi.org/10.1029/1999RG000073, 2001. 4. Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H., Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.: Sudden stratospheric warmings, Rev. Geophys., 59, e2020RG000708, https://doi.org/10.1029/2020RG000708, 2021. 5. Banyard, T. P., Wright, C. J., Hindley, N. P., Halloran, G., Krisch, I.,
Kaifler, B., and Hoffmann, L.: Atmospheric gravity waves in Aeolus wind
lidar observations, Geophys. Res. Lett., 48, e2021GL092756,
https://doi.org/10.1029/2021GL092756, 2021a.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|