Homogenization of the Observatoire de Haute Provence electrochemical concentration cell (ECC) ozonesonde data record: comparison with lidar and satellite observations

Author:

Ancellet GérardORCID,Godin-Beekmann SophieORCID,Smit Herman G. J.,Stauffer Ryan M.ORCID,Van Malderen RoelandORCID,Bodichon Renaud,Pazmiño Andrea

Abstract

Abstract. The Observatoire de Haute Provence (OHP) weekly electrochemical concentration cell (ECC) ozonesonde data have been homogenized for the period 1991–2021 according to the recommendations of the Ozonesonde Data Quality Assessment (O3S-DQA) panel. The assessment of the ECC homogenization benefit has been carried out using comparisons with other ozone-measuring ground-based instruments at the same station (lidar, surface measurements) and with colocated satellite observations of the O3 vertical profile by Microwave Limb Sounder (MLS). The major differences between uncorrected and homogenized ECC data are related to a change of ozonesonde type in 1997, removal of the pressure dependency of the ECC background current and correction of internal pump temperature. The original 3–4 ppbv positive bias between ECC and lidar in the troposphere is corrected with the homogenization. The ECC 30-year trends of the seasonally adjusted ozone concentrations are also significantly improved in both the troposphere and the stratosphere after the ECC homogenization, as shown by the ECC/lidar or ECC/surface ozone trend comparisons. A −0.19 % yr−1 negative trend of the normalization factor (NT) calculated using independent measurements of the total ozone column (TOC) at OHP disappears after homogenization of the ECC data. There is, however, a remaining −3.7 % negative bias in the TOC which is likely related to an underestimate of the ECC concentrations in the stratosphere above 50 hPa. Differences between TOC measured by homogenized ECC and satellite observations show a smaller bias of −1 %. Comparisons between homogenized ECC and OHP stratospheric lidar and MLS observations below 26 km are slightly negative (−2 %) or positive (+2 %), respectively. The comparisons with both lidar and satellite observations suggest that homogenization increases the negative bias of the ECC to values lower than −6 % above 28 km. The reason for this bias is still unclear, but a possible explanation might be related to freezing or evaporation of the sonde solution in the stratosphere.

Funder

Centre National de la Recherche Scientifique

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3