Concurrent wet and dry hydrological extremes at the global scale
-
Published:2020-03-10
Issue:1
Volume:11
Page:251-266
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
De Luca PaoloORCID, Messori GabrieleORCID, Wilby Robert L., Mazzoleni MaurizioORCID, Di Baldassarre GiulianoORCID
Abstract
Abstract. Multi-hazard events can be associated with larger socio-economic impacts than single-hazard events. Understanding the spatio-temporal interactions that characterize the former is therefore of relevance to disaster risk reduction measures. Here, we consider two high-impact hazards, namely wet and dry hydrological extremes, and quantify their global co-occurrence. We define these using the monthly self-calibrated Palmer Drought Severity Index based on the Penman–Monteith model (sc_PDSI_pm), covering the period 1950–2014, at 2.5∘ horizontal resolution. We find that the land areas affected by extreme wet, dry, and wet–dry events (i.e. geographically remote yet temporally co-occurring wet or dry extremes) are all increasing with time, the trends of which in dry and wet–dry episodes are significant (p value ≪ 0.01). The most geographically widespread
wet–dry event was associated with the strong La Niña in 2010. This
caused wet–dry anomalies across a land area of 21 million km2 with
documented high-impact flooding and drought episodes spanning diverse
regions. To further elucidate the interplay of wet and dry extremes at a
grid cell scale, we introduce two new metrics: the wet–dry (WD) ratio and
the extreme transition (ET) time intervals. The WD ratio measures the
relative occurrence of wet or dry extremes, whereas ET quantifies the
average separation time of hydrological extremes with opposite signs. The
WD ratio shows that the incidence of wet extremes dominates over dry
extremes in the USA, northern and southern South America, northern Europe,
north Africa, western China, and most of Australia. Conversely, dry extremes
are more prominent in most of the remaining regions. The median ET for wet
to dry is ∼27 months, while the dry-to-wet median ET is 21 months. We also evaluate correlations between wet–dry hydrological extremes and leading modes of climate variability, namely the El Niño–Southern
Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic
Multi-decadal Oscillation (AMO). We find that ENSO and PDO have a similar
influence globally, with the former significantly impacting (p value < 0.05) a larger area (18.1 % of total sc_PDSI_pm area) compared to the latter (12.0 %), whereas the AMO shows an almost inverse pattern and significantly impacts the largest area overall (18.9 %). ENSO and PDO show the most significant correlations over northern South America, the central and western USA, the Middle East, eastern Russia, and eastern Australia. On the other hand, the AMO shows significant associations over Mexico, Brazil, central Africa, the Arabian Peninsula, China, and eastern Russia. Our analysis brings new insights on hydrological multi-hazards that are of relevance to governments and organizations with globally distributed interests. Specifically, the multi-hazard maps may be used to evaluate worst-case disaster scenarios considering the potential co-occurrence of wet and dry hydrological extremes.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference116 articles.
1. Alfieri, L., Feyen, L., and Di Baldassarre, G.: Increasing flood risk under
climate change: a pan-European assessment of the benefits of four adaptation
strategies, Climatic Change, 136, 507–521, https://doi.org/10.1007/s10584-016-1641-1, 2016. 2. Arnell, N. W. and Gosling, S. N.: The impacts of climate change on river flood risk at the global scale, Climatic Change, 134, 387–401,
https://doi.org/10.1007/s10584-014-1084-5, 2016. 3. Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H.,
Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T.,
Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229,
https://doi.org/10.1029/1999RG000073, 2001. 4. Barnston, A. G. and Livezey, R. E.: Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns, Mon. Weather Rev., 115, 1083–1126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2, 1987. 5. Barredo, J. I.: Major flood disasters in Europe: 1950–2005, Nat. Hazards, 42, 125–148, https://doi.org/10.1007/s11069-006-9065-2, 2007.
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|