Hydrological Drought‐To‐Flood Transitions Across Different Hydroclimates in the United States

Author:

Götte Jonas123ORCID,Brunner Manuela I.123ORCID

Affiliation:

1. Institute for Atmospheric and Climate Science ETH Zurich Zurich Switzerland

2. WSL Institute for Snow and Avalanche Research SLF Davos Dorf Switzerland

3. Climate Change Extremes and Natural Hazards in Alpine Regions Research Center CERC Davos Dorf Switzerland

Abstract

AbstractFloods following on streamflow droughts can have severe impacts. While they have been prominently featured by the media in recent years, we know little about their spatio‐temporal variability. In this study, we analyze the occurrence and drivers of such drought‐to‐flood transitions by calculating transition lengths from droughts to floods for natural and regulated catchments across the Contiguous United States between 1970 and 2022. We find that drought‐to‐flood transitions strongly vary in their lengths and their spatial distribution. We identify snowmelt as the main driver of transitions in high‐elevation catchments, while transitions in low‐elevation catchments are more variable in their time of occurrence and drivers. Reservoir management reduces the number of short drought‐to‐flood transitions, particularly in catchments with a high amount of snow where snowmelt is crucial for filling reservoirs in early summer. These findings suggest that projected changes in the snowmelt season will lead to changes in transitions from streamflow droughts to floods and that reservoir management may be used to adapt to these changes.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3