The IAGOS NO<sub><i>x</i></sub> instrument – design, operation and first results from deployment aboard passenger aircraft
-
Published:2018-06-27
Issue:6
Volume:11
Page:3737-3757
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Berkes FlorianORCID, Houben Norbert, Bundke UlrichORCID, Franke Harald, Pätz Hans-Werner, Rohrer Franz, Wahner AndreasORCID, Petzold AndreasORCID
Abstract
Abstract. We describe the nitrogen oxide instrument designed for the autonomous operation on board passenger aircraft in the framework of the European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System). We demonstrate the performance of the instrument using data from two deployment periods aboard an A340-300 aircraft of Deutsche Lufthansa. The well-established chemiluminescence detection method is used to measure nitrogen monoxide (NO) and nitrogen oxides (NOx). NOx is measured using a photolytic converter, and nitrogen dioxide (NO2) is determined from the difference between NOx and NO. This technique allows measuring at high time resolution (4 s) and high precision in the low ppt range (NO: 2σ = 24 pptv; NOx: 2σ = 35 pptv) over different ambient temperature and ambient pressure altitude ranges (from surface pressure down to 190 hPa). The IAGOS NOx instrument is characterized for (1) calibration stability and total uncertainty, (2) humidity and chemical interferences (e.g., ozone; nitrous acid, HONO; peroxyacetyl nitrate, PAN) and (3) inter-instrumental precision. We demonstrate that the IAGOS NOx instrument is a robust, fully automated, and long-term stable instrument suitable for unattended operation on airborne platforms, which provides useful measurements for future air quality studies and emission estimates.
Funder
Bundesministerium für Bildung und Forschung
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference82 articles.
1. Ainsworth, E., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson, L. D.: The effects of tropospheric ozone on net primary productivity and implications for climate change, Annu. Rev. Plant Biol., 63, 637–61, https://doi.org/10.1146/annurev-arplant-042110-103829, 2012. 2. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004. 3. Avallone, L. M., Toohey, D. W., Schauffler, S. M., Pollock, W. H., Heidt, L. E., Atlas, E. L., and Chan, K. R.: In situ measurements of BrO During AASE II, Geophys. Res. Lett., 22, 831–834, https://doi.org/10.1029/95GL00393, 1995. 4. Berkes, F., Neis, P., Schultz, M. G., Bundke, U., Rohs, S., Smit, H. G. J., Wahner, A., Konopka, P., Boulanger, D., Nédélec, P., Thouret, V., and Petzold, A.: In situ temperature measurements in the upper troposphere and lowermost stratosphere from 2 decades of IAGOS long-term routine observation, Atmos. Chem. Phys., 17, 12495–12508, https://doi.org/10.5194/acp-17-12495-2017, 2017. 5. Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes, P., Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y., and Brunner, D.: An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument, Atmos. Meas. Tech., 4, 1905–1928, https://doi.org/10.5194/amt-4-1905-2011, 2011.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|