Factors of air ion balance in a coniferous forest according to measurements in Hyytiälä, Finland

Author:

Tammet H.,Hõrrak U.,Laakso L.,Kulmala M.

Abstract

Abstract. A new mathematical model describing air ion balance was developed and tested. It has improved approximations and includes dry deposition of ions onto the forest canopy. The model leads to an explicit algebraic solution of the balance equations. This allows simple calculation of both the ionization rate and the average charge of aerosol particles from measurements of air ions and aerosol particles, with some parameters of the forest. Charged aerosol particles are distinguished from cluster ions by their size, which exceeds 1.6 nm diameter. The relative uncertainty of the ionization rate is about the same or less than the relative uncertainties of the measurements. The model was tested with specific air ion measurements carried out simultaneously at two heights at the Hyytiälä forest station, Finland. Earlier studies have shown a difference in the predictions of the ionization rate in the Hyytiälä forest when calculated in two different ways: based on the measurements of the environmental radioactivity and based on the air ion and aerosol measurements. The new model explains the difference as a consequence of neglecting dry deposition of ions in the earlier models. The ionization rate during the 16 h campaign was 5.6±0.8 cm−3 s−1 at the height of 2 m and 3.9±0.2 cm−3 s−1 at the height of 14 m, between the tops of the trees. The difference points out the necessity to consider the height variation when the ionization rate is used as a parameter in studies of ion-induced nucleation. Additional results are some estimates of the parameters of air ion balance. The recombination sink of cluster ions on the ions of opposite polarity made up 9–13%, the sink on aerosol particles 65–69%, and the sink on forest canopy 18–26% of the total sink of cluster ions. The average lifetime of cluster ions was about 130 s for positive and about 110 s for negative ions. At the height of 2 m, about 70% of the space charge of air was carried by aerosol particles, and at the height of 14 m, about 84%.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3