Seamless Hourly Estimation of Negative Air Ion Concentrations: Integrating Hybrid Stacked Machine Learning Models With Kriging Spatiotemporal Augmentation

Author:

Liang Zhehao12ORCID,Zeng Zhaoliang2ORCID,Kada Martin1,Luo Yanqing1,Kaufhold Lilli1,Xu LinSen3,Gui Ke4ORCID,Zhao Yan2,Wang Yaqiang25

Affiliation:

1. Institute for Geodesy and Geoinfomation Science Technische Universität Berlin Berlin Germany

2. State Key Laboratory of Severe Weather & Institute of Artificial Intelligence for Meteorology Chinese Academy of Meteorological Sciences Beijing China

3. Shanxi Technology and Business University Taiyuan China

4. State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA Chinese Academy of Meteorological Sciences Beijing China

5. Xiong'an Institute of Meteorological Artificial Intelligence Xiong'an China

Abstract

AbstractNegative Air Ions (NAIs), essential for environmental and human health, facilitate air purification and offer antimicrobial benefits. Our study achieves hourly estimations of NAIs using a machine learning framework, developed from a multi‐layer selection pipeline of over 200 variables, to identify the key determinants critical for adapting to high‐resolution NAIs dynamics. Addressing site sparsity and NAIs volatility, we introduced a hybrid stacking incorporating pseudo sites generated from Kriging Spatiotemporal Augmentation (KSTA) to mitigate spatial overfitting. Our approach, validated in Zhejiang, China, demonstrates exceptional accuracy, achieving R2 values of 0.90 (sample‐based), 0.85 (temporal‐based), and 0.79 (site‐based). This work not only sheds light on NAIs behavior in relation to diurnal shifts, land use, and environmental events, but also integrates a health grading system, enhancing public health strategies through precise air quality assessment.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3