GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters

Author:

Schmidt T.,Heise S.,Wickert J.,Beyerle G.,Reigber C.

Abstract

Abstract. In this study the global lapse-rate tropopause (LRT) pressure, temperature, potential temperature, and sharpness are discussed based on Global Positioning System (GPS) radio occultations (RO) from the German CHAMP (CHAllenging Minisatellite Payload) and the U.S.-Argentinian SAC-C (Satelite de Aplicaciones Cientificas-C) satellite missions. Results with respect to seasonal variations are compared with operational radiosonde data and ECMWF (European Centre for Medium-Range Weather Forecast) operational analyses. Results on the tropical quasi-biennial oscillation (QBO) are updated from an earlier study. CHAMP RO data are available continuously since May 2001 with on average 150 high resolution temperature profiles per day. SAC-C data are available for several periods in 2001 and 2002. In this study temperature data from CHAMP for the period May 2001-December 2004 and SAC-C data from August 2001-October 2001 and March 2002-November 2002 were used, respectively. The bias between GPS RO temperature profiles and radiosonde data was found to be less than 1.5K between 300 and 10hPa with a standard deviation of 2-3K. Between 200-20hPa the bias is even less than 0.5K (2K standard deviation). The mean deviations based on 167699 comparisons between CHAMP/SAC-C and ECMWF LRT parameters are (-2.1±37.1)hPa for pressure and (0.1±4.2)K for temperature. Comparisons of LRT pressure and temperature between CHAMP and nearby radiosondes (13230) resulted in (5.8±19.8)hPa and (-0.1±3.3)K, respectively. The comparisons between CHAMP/SAC-C and ECMWF show on average the largest differences in the vicinity of the jet streams with up to 700m in LRT altitude and 3K in LRT temperature, respectively. The CHAMP mission generates the first long-term RO data set. Other satellite missions will follow (GRACE, COSMIC, MetOp, TerraSAR-X, EQUARS) generating together some thousand temperature profiles daily.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3