Evaluation of Tropopause Height from Sentinel-6 GNSS Radio Occultation Using Different Methods

Author:

Zhran Mohamed1ORCID,Mousa Ashraf2,Alshehri Fahad3ORCID,Jin Shuanggen45ORCID

Affiliation:

1. Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt

2. Geodynamic Department, National Research Institute of Astronomy and Geophysics, Helwan 11421, Egypt

3. Abdullah Alrushaid Chair for Earth Science Remote Sensing Research, Geology and Geophysics Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

4. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China

5. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China

Abstract

The tropopause is described as the distinction between the troposphere and the stratosphere, and the tropopause height (TPH) is an indicator of climate change. GNSS Radio Occultation (RO) can monitor the atmosphere globally under all weather conditions with a high vertical resolution. In this study, four different techniques for identifying the TPH were investigated. The lapse rate tropopause (LRT) and cold point tropopause (CPT) methods are the traditional methods for determining the TPH based on temperature profiles according to the World Meteorological Organization (WMO) definition. Two advanced methods based on the covariance transform (CT) method are used to estimate the TPH from the refractivity (TPHN) and the TPH from the bending angle (TPHα). Data from the Sentinel-6 satellite were used to evaluate the different algorithms for the identification of the TPH. The analysis shows that the CPT height is greater than the LRT height and that the CPT is only valid in tropical regions. The CPT height, TPHN, and TPHα were compared with the LRT height. In general, the TPHα had the largest value, followed by the TPHN, and the LRT had the lowest value of TPH at and near the equator. In the equatorial region, the maximum TPH results from the TPHα (approximately 17.5 km), and at the poles, the minimum TPH results from the LRT (approximately 9 km). The results were also compared with the European Center for Medium-Range Weather Forecasts (ECMWF), and there was a strong correlation of 0.999 between the different approaches for identifying the TPH from RO and the ECMWF model. The identification of the TPH is critical for the transfer of mass, water, and trace gases between the troposphere and stratosphere.

Funder

Abdullah Alrushaid Chair for Earth Science Remote Sensing Research at King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3