Nanoparticle formation by ozonolysis of inducible plant volatiles

Author:

Joutsensaari J.,Loivamäki M.,Vuorinen T.,Miettinen P.,Nerg A.-M.,Holopainen J. K.,Laaksonen A.

Abstract

Abstract. We present the first laboratory experiments of aerosol formation from oxidation of volatile organic species emitted by living plants, a process which for half a century has been known to take place in the atmosphere. We have treated white cabbage plants with methyl jasmonate in order to induce the production of monoterpenes and certain less-volatile sesqui- and homoterpenes. Ozone was introduced into the growth chamber in which the plants were placed, and the subsequent aerosol formation and growth of aerosols were monitored by measuring the particle size distributions continuously during the experiments. Our observations show similar particle formation rates as in the atmosphere but much higher growth rates. The results indicate that the concentrations of nonvolatile oxidation products of plant released precursors needed to induce the nucleation are roughly an order-of-magnitude higher than their concentrations during atmospheric nucleation events. Our results therefore suggest that if oxidized organics are involved in atmospheric nucleation events, their role is to participate in the growth of pre-existing molecular clusters rather than to form such clusters through homogeneous or ion-induced nucleation.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3