Emission Pattern of Biogenic Volatile Organic Compounds from Wetland Vegetation

Author:

Chen Wenbin1,Wang Luxi1ORCID,Wu Ju1,Lun Xiaoxiu1,Wang Xiaoyue1,Li Xiaoyi1

Affiliation:

1. College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China

Abstract

Biogenic volatile organic compounds (BVOCs) significantly contribute to atmospheric chemistry at both regional and global scales. The composition and intensity of BVOC emissions vary significantly among different plant species. Previous studies have focused on BVOC emissions from tree species, but the results of research on BVOC emissions from wetland plants are still limited. Therefore, in this study, BVOCs emitted by three aquatic plants (Phragmites australis, Typha angustifolia, and Iris pseudacorus) were sampled and analyzed using a dynamic headspace technique combined with GC-MS at daily scales. The diurnal observation data showed that the total BVOC emission rates of the three plants peaked with the increase in environmental factors (temperature, PAR, and water temperature). P. australis was the only of the three plants that emitted isoprene with a high rate of 48.34 μg·g−1Dw·h−1. Moreover, the peak emission rates of total BVOC (78.45 μg·g−1Dw·h−1) in P. australis were higher than most tree species. The emissions rates of volatile organic compounds, including monoterpenes, oxygenated volatile organic compounds, alkanes, and other volatile organic compounds, were statistically correlated across all species. The emission rates of isoprene from P. australis had significant associations with intercellular CO2 concentration (Ci) (0.58, p < 0.05) and transpiration rate (Tr) (−0.63, p < 0.01). The emission rates of monoterpenes from P. australis were found to have a significantly positive correlation with the net photosynthetic rate (Pn) (0.58, p < 0.05) while T. angustifolia (−0.59, p < 0.05) and I. pseudacorus (−0.47, p < 0.05) showed the opposite trend. Such findings hold significance for the refinement of localized emission inventories and the development of comprehensive emission process models in future research, as BVOC emissions from wetland plants were reported here for the first time.

Funder

Xiong’an New Area Science and Technology Innovation Project

5·5 Engineering Research & Innovation Team Project of Beijing Forestry University

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3