Possible impacts of climate change on freezing rain in south-central Canada using downscaled future climate scenarios

Author:

Cheng C. S.,Auld H.,Li G.,Klaassen J.,Li Q.

Abstract

Abstract. Freezing rain is a major atmospheric hazard in mid-latitude nations of the globe. Among all Canadian hydrometeorological hazards, freezing rain is associated with the highest damage costs per event. Using synoptic weather typing to identify the occurrence of freezing rain events, this study estimates changes in future freezing rain events under future climate scenarios for south-central Canada. Synoptic weather typing consists of principal components analysis, an average linkage clustering procedure (i.e., a hierarchical agglomerative cluster method), and discriminant function analysis (a nonhierarchical method). Meteorological data used in the analysis included hourly surface observations from 15 selected weather stations and six atmospheric levels of six-hourly National Centers for Environmental Prediction (NCEP) upper-air reanalysis weather variables for the winter months (November–April) of 1958/59–2000/01. A statistical downscaling method was used to downscale four general circulation model (GCM) scenarios to the selected weather stations. Using downscaled scenarios, discriminant function analysis was used to project the occurrence of future weather types. The within-type frequency of future freezing rain events is assumed to be directly proportional to the change in frequency of future freezing rain-related weather types The results showed that with warming temperatures in a future climate, percentage increases in the occurrence of freezing rain events in the north of the study area are likely to be greater than those in the south. By the 2050s, freezing rain events for the three colder months (December–February) could increase by about 85% (95% confidence interval – CI: ±13%), 60% (95% CI: &plusmn9%), and 40% (95% CI: ±6%) in northern Ontario, eastern Ontario (including Montreal, Quebec), and southern Ontario, respectively. The increase by the 2080s could be even greater: about 135% (95% CI: ±20%), 95% (95% CI: ±13%), and 45% (95% CI: ±9%). For the three warmer months (November, March, April), the percentage increases in future freezing rain events are projected to be much smaller with some areas showing either a decrease or little change in frequency of freezing rain. On average, northern Ontario could experience about 10% (95% CI: ±2%) and 20% (95% CI: ±4%) more freezing rain events by the 2050s and 2080s, respectively. However, future freezing rain events in southern Ontario could decrease about 10% (95% CI: ±3%) and 15% (95% CI: ±5%) by the 2050s and 2080s, respectively. In eastern Ontario (including Montreal, Quebec), the frequency of future freezing rain events is projected to remain the same as it is currently.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference67 articles.

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3