Improved Diagnosis of Precipitation Type with LightGBM Machine Learning

Author:

Zhuang Haoyu (Richard)1ORCID,Lehner Flavio123,DeGaetano Arthur T.14

Affiliation:

1. a Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

2. b Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

3. c Polar Bears International, Bozeman, Montana

4. d Northeast Regional Climate Center, Cornell University, Ithaca, New York

Abstract

Abstract Existing precipitation-type algorithms have difficulty discerning the occurrence of freezing rain and ice pellets. These inherent biases are not only problematic in operational forecasting but also complicate the development of model-based precipitation-type climatologies. To address these issues, this paper introduces a novel light gradient-boosting machine (LightGBM)-based machine learning precipitation-type algorithm that utilizes reanalysis and surface observations. By comparing it with the Bourgouin precipitation-type algorithm as a baseline, we demonstrate that our algorithm improves the critical success index (CSI) for all examined precipitation types. Moreover, when compared with the precipitation-type diagnosis in reanalysis, our algorithm exhibits increased F1 scores for snow, freezing rain, and ice pellets. Subsequently, we utilize the algorithm to compute a freezing-rain climatology over the eastern United States. The resulting climatology pattern aligns well with observations; however, a significant mean bias is observed. We interpret this bias to be influenced by both the algorithm itself and assumptions regarding precipitation processes, which include biases associated with freezing drizzle, precipitation occurrence, and regional synoptic weather patterns. To mitigate the overall bias, we propose increasing the precipitation cutoff from 0.04 to 0.25 mm h−1, as it better reflects the precision of precipitation observations. This adjustment yields a substantial reduction in the overall bias. Finally, given the strong performance of LightGBM in predicting mixed precipitation episodes, we anticipate that the algorithm can be effectively utilized in operational settings and for diagnosing precipitation types in climate model outputs. Significance Statement Freezing rain can have significant impacts on transportation and infrastructure, making accurate prediction of precipitation types crucial. In this study, we use a machine learning method known as LightGBM to predict precipitation types. We show that the new algorithm performs better than the existing methods for all precipitation types examined. Additionally, we compute a freezing-rain climatology over the eastern United States. Although the resulting climatology pattern corresponds well to observations, the algorithm overpredicts freezing-rain occurrence. We argue that this bias can be substantially reduced by increasing the precipitation cutoff from 0.04 to 0.25 mm h−1. Overall, this work highlights the potential of the LightGBM algorithm for both weather forecasting and diagnosing precipitation types in climate models.

Funder

National Centers for Environmental Information

Biological and Environmental Research

National Science Foundation

Publisher

American Meteorological Society

Reference40 articles.

1. Explicit precipitation-type diagnosis from a model using a mixed-phase bulk cloud–precipitation microphysics parameterization;Benjamin, S. G.,2016

2. Regional and local influences on freezing drizzle, freezing rain, and ice pellet events;Bernstein, B. C.,2000

3. Accurate medium-range global weather forecasting with 3D neural networks;Bi, K.,2023

4. A revised Bourgouin precipitation-type algorithm;Birk, K.,2021

5. A method to determine precipitation types;Bourgouin, P.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3