Transition process of abrupt climate change based on global sea surface temperature over the past century

Author:

Yan Pengcheng,Hou Wei,Feng Guolin

Abstract

Abstract. A new detection method has been proposed to study the transition process of abrupt climate change. With this method, the climate system transiting from one stable state to another can be verified clearly. By applying this method to the global sea surface temperature over the past century, several climate changes and their processes are detected, including the start state (moment), persist time, and end state (moment). According to the spatial distribution, the locations of climate changes mainly have occurred in the Indian Ocean and western Pacific before the middle twentieth century, in the 1970s in the equatorial middle-eastern Pacific, and in the middle and southern Pacific since the end of the twentieth century. In addition, the quantitative relationship between the transition process parameters is verified in theory and practice: (1) the relationship between the rate and stability parameters is linear, and (2) the relationship between the rate and change amplitude parameters is quadratic.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

General Medicine

Reference35 articles.

1. Alexander, R., Reinhard, C., and Andrey, G.: Multistability and critical thresholds of the Greenland ice sheet, Nature Climate Change, 2, 429–432, 2012.

2. Baker, M. B. and Charlson, R. J.: Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer, Nature, 345, 142–145, 1990.

3. Charney, J. G. and DeVore, J. G.: Multiple flow equilibria in the atmosphere and blocking, J. Atmos. Sci., 36, 1205–1216, 1979.

4. Earth System Research Laboratory: NOAA_ERSST_V4, available at: http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html, last access: 17 May 2005.

5. Feng, G. L., Hou, W., Zhi, R., Yang, P., Zhang, D. Q., Gong, Z. Q., and Wan, S. Q.: Research on Detecting, Diagnosing and Predictability of Extreme Climate Events, Science Press, Beijing, China, 2011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3