Long-Term Changes in Inland Water Surface Temperature across China Based on Remote Sensing Data

Author:

Wang Rui12,Yan Xin12,Niu Zhenguo1,Chen Wei3

Affiliation:

1. a State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China

2. b University of Chinese Academy of Sciences, Beijing, China

3. c Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Abstract

AbstractWater surface temperature is a direct indication of climate change. However, it is not clear how China’s inland waters have responded to climate change in the past using a consistent method on a national scale. In this study, we used Moderate Resolution Imaging Spectroradiometer (MODIS) data from 2000 to 2015 to study the temporal and spatial variation characteristics of water surface temperature in China using the wavelet transform method. The results showed the following: 1) the freezing date of China inland water has shown a significant delaying trend during the past 16 years with an average rate of −1.5 days yr−1; 2) the shift of the 0°C isotherm position of surface water across China has clear seasonal changes, which first moved eastward about 25° and northward about 15°, and then gradually moved back after the year 2009; 3) during the past 16 years, the 0°C isotherm of China’s surface water has gradually moved north by about 0.09° in the latitude direction and east by about 1° in the longitude direction; and 4) the interannual variation of water surface temperature in 17 lakes of China showed a similar fluctuation trend that increased before 2010, and then decreased. The El Niño and La Niña around 2010 could have impacts on the turning point of the annual variation of water surface temperature. This study validated the response of China’s inland surface water to global climate change and improved the understanding of the wetland environment’s response to climate change.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3