Wind direction estimation using SCADA data with consensus-based optimization

Author:

Annoni Jennifer,Bay ChristopherORCID,Johnson Kathryn,Dall'Anese Emiliano,Quon EliotORCID,Kemper Travis,Fleming PaulORCID

Abstract

Abstract. Wind turbines in a wind farm typically operate individually to maximize their own performance and do not take into account information from nearby turbines. To enable cooperation to achieve farm-level objectives, turbines will need to use information from nearby turbines to optimize performance, ensure resiliency when other sensors fail, and adapt to changing local conditions. A key element of achieving a more efficient wind farm is to develop algorithms that ensure reliable, robust, real-time, and efficient operation of wind turbines in a wind farm using local sensor information that is already being collected, such as supervisory control and data acquisition (SCADA) data, local meteorological stations, and nearby radars/sodars/lidars. This article presents a framework for developing a cooperative wind farm that incorporates information from nearby turbines in real time to better align turbines in a wind farm. SCADA data from multiple turbines can be used to make better estimates of the local inflow conditions at each individual turbine. By incorporating measurements from multiple nearby turbines, a more reliable estimate of the wind direction can be obtained at an individual turbine. The consensus-based approach presented in this paper uses information from nearby turbines to estimate wind direction in an iterative way rather than aggregating all the data in a wind farm at once. Results indicate that this estimate of the wind direction can be used to improve the turbine's knowledge of the wind direction. This estimated wind direction signal has implications for potentially decreasing dynamic yaw misalignment, decreasing the amount of time a turbine spends yawing due to a more reliable input to the yaw controller, increasing resiliency to faulty wind-vane measurements, and increasing the potential for wind farm control strategies such as wake steering.

Funder

Wind Energy Technologies Office

Publisher

Copernicus GmbH

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3