REDCAPP (v1.0): parameterizing valley inversions in air temperature data downscaled from reanalyses

Author:

Cao BinORCID,Gruber StephanORCID,Zhang Tingjun

Abstract

Abstract. In mountain areas, the use of coarse-grid reanalysis data for driving fine-scale models requires downscaling of near-surface (e.g., 2 m high) air temperature. Existing approaches describe lapse rates well but differ in how they include surface effects, i.e., the difference between the simulated 2 m and upper-air temperatures. We show that different treatment of surface effects result in some methods making better predictions in valleys while others are better in summit areas. We propose the downscaling method REDCAPP (REanalysis Downscaling Cold Air Pooling Parameterization) with a spatially variable magnitude of surface effects. Results are evaluated with observations (395 stations) from two mountain regions and compared with three reference methods. Our findings suggest that the difference between near-surface air temperature and pressure-level temperature (ΔT) is a good proxy of surface effects. It can be used with a spatially variable land-surface correction factor (LSCF) for improving downscaling results, especially in valleys with strong surface effects and cold air pooling during winter. While LSCF can be parameterized from a fine-scale digital elevation model (DEM), the transfer of model parameters between mountain ranges needs further investigation.

Funder

National Natural Science Foundation of China

Canada Foundation for Innovation

Publisher

Copernicus GmbH

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3