Machine-Learning-Based Downscaling of Hourly ERA5-Land Air Temperature over Mountainous Regions
-
Published:2023-03-23
Issue:4
Volume:14
Page:610
-
ISSN:2073-4433
-
Container-title:Atmosphere
-
language:en
-
Short-container-title:Atmosphere
Author:
Sebbar Badr-eddine12ORCID, Khabba Saïd13, Merlin Olivier2, Simonneaux Vincent2ORCID, Hachimi Chouaib El1ORCID, Kharrou Mohamed Hakim4, Chehbouni Abdelghani124ORCID
Affiliation:
1. Center for Remote Sensing Applications, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco 2. Centre d’Etudes Spatiales de la Biosphère (CESBIO), Université de Toulouse, CNES, CNRS, IRD, UPS, 31400 Toulouse, France 3. LMFE, Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco 4. International Water Research Institute (IWRI), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
Abstract
In mountainous regions, the scarcity of air temperature (Ta) measurements is a major limitation for hydrological and crop monitoring. An alternative to in situ measurements could be to downscale the reanalysis Ta data provided at high-temporal resolution. However, the relatively coarse spatial resolution of these products (i.e., 9 km for ERA5-Land) is unlikely to be directly representative of actual local Ta patterns. To address this issue, this study presents a new spatial downscaling strategy of hourly ERA5-Land Ta data with a three-step procedure. First, the 9 km resolution ERA5 Ta is corrected at its original resolution by using a reference Ta derived from the elevation of the 9 km resolution grid and an in situ estimate over the area of the hourly Environmental Lapse Rate (ELR). Such a correction of 9 km resolution ERA5 Ta is trained using several machine learning techniques, including Multiple Linear Regression (MLR), Support Vector Regression (SVR), and Extreme Gradient Boosting (Xgboost), as well as ancillary ERA5 data (daily mean, standard deviation, hourly ELR, and grid elevation). Next, the trained correction algorithms are run to correct 9 km resolution ERA5 Ta, and the corrected ERA5 Ta data are used to derive an updated ELR over the area (without using in situ Ta measurements). Third, the updated hourly ELR is used to disaggregate 9 km resolution corrected ERA5 Ta data at the 30-meter resolution of SRTM’s Digital Elevation Model (DEM). The effectiveness of this method is assessed across the northern part of the High Atlas Mountains in central Morocco through (1) k-fold cross-validation against five years (2016 to 2020) of in situ hourly temperature readings and (2) comparison with classical downscaling methods based on a constant ELR. Our results indicate a significant enhancement in the spatial distribution of hourly local Ta. By comparing our model, which included Xgboost, SVR, and MLR, with the constant ELR-based downscaling approach, we were able to decrease the regional root mean square error from approximately 3 ∘C to 1.61 ∘C, 1.75 ∘C, and 1.8 ∘C, reduce the mean bias error from −0.5 ∘C to null, and increase the coefficient of determination from 0.88 to 0.97, 0.96, and 0.96 for Xgboost, SVR, and MLR, respectively.
Funder
OCP S.A. (Office Chérifien des Phosphates) in the context of ASSIWAT project The Horizon 2020 ACCWA project
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Reference84 articles.
1. Maraun, D., Wetterhall, F., Ireson, A., Chandler, R., Kendon, E., Widmann, M., Brienen, S., Rust, H., Sauter, T., and Themeßl, M. (2010). Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48. 2. Modeling primary production using a 1 km daily meteorological data set;Maselli;Clim. Res.,2012 3. Snowfall limit forecasts and hydrological modeling;Tobin;J. Hydrometeorol.,2012 4. Evaluation of downscaled, gridded climate data for the conterminous United States;Behnke;Ecol. Appl.,2016 5. Improving the use of climate information in decision-making;Hewitt;Nat. Clim. Chang.,2017
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|