Characteristics of tropopause parameters as observed with GPS radio occultation

Author:

Rieckh T.,Scherllin-Pirscher B.ORCID,Ladstädter F.ORCID,Foelsche U.ORCID

Abstract

Abstract. Characteristics of the lapse rate tropopause are analyzed globally for tropopause altitude and temperature using global positioning system (GPS) radio occultation (RO) data from late 2001 to the end of 2013. RO profiles feature high vertical resolution and excellent quality in the upper troposphere and lower stratosphere, which are key factors for tropopause determination, including multiple ones. RO data provide measurements globally and allow examination of both temporal and spatial tropopause characteristics based entirely on observational measurements. To investigate latitudinal and longitudinal tropopause characteristics, the mean annual cycle, and inter-annual variability, we use tropopauses from individual profiles as well as their statistical measures for zonal bands and 5° × 10° bins. The latitudinal structure of first tropopauses shows the well-known distribution with high (cold) tropical tropopauses and low (warm) extra-tropical tropopauses. In the transition zones (20 to 40° N/S), individual profiles reveal varying tropopause altitudes from less than 7 km to more than 17 km due to variability in the subtropical tropopause break. In this region, we also find multiple tropopauses throughout the year. Longitudinal variability is strongest at northern hemispheric mid latitudes and in the Asian monsoon region. The mean annual cycle features changes in amplitude and phase, depending on latitude. This is caused by different underlying physical processes (such as the Brewer–Dobson circulation – BDC) and atmospheric dynamics (such as the strong polar vortex in the southern hemispheric winter). Inter-annual anomalies of tropopause parameters show signatures of El Niño–Southern Oscillation (ENSO), the quasi–biennial oscillation (QBO), and the varying strength of the polar vortex, including sudden stratospheric warming (SSW) events. These results are in good agreement with previous studies and underpin the high utility of the entire RO record for investigating latitudinal, longitudinal, and temporal tropopause characteristics globally.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3