Modelling and assimilation of lidar signals over Greater Paris during the MEGAPOLI summer campaign
-
Published:2014-04-08
Issue:7
Volume:14
Page:3511-3532
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Wang Y., Sartelet K. N., Bocquet M.ORCID, Chazette P.ORCID
Abstract
Abstract. In this study, we investigate the ability of the chemistry transport model (CTM) Polair3D of the air quality modelling platform Polyphemus to simulate lidar backscattered profiles from model aerosol concentration outputs. This investigation is an important preprocessing stage of data assimilation (validation of the observation operator). To do so, simulated lidar signals are compared to hourly lidar observations performed during the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) summer experiment in July 2009, when a ground-based mobile lidar was deployed around Paris on-board a van. The comparison is performed for six different measurement days, 1, 4, 16, 21, 26 and 29 July 2009, corresponding to different levels of pollution and different atmospheric conditions. Overall, Polyphemus well reproduces the vertical distribution of lidar signals and their temporal variability, especially for 1, 16, 26 and 29 July 2009. Discrepancies on 4 and 21 July 2009 are due to high-altitude aerosol layers, which are not well modelled. In the second part of this study, two new algorithms for assimilating lidar observations based on the optimal interpolation method are presented. One algorithm analyses PM10 (particulate matter with diameter less than 10 μm) concentrations. Another analyses PM2.5 (particulate matter with diameter less than 2.5 μm) and PM2.5–10 (particulate matter with a diameter higher than 2.5 μm and lower than 10 μm) concentrations separately. The aerosol simulations without and with lidar data assimilation (DA) are evaluated using the Airparif (a regional operational network in charge of air quality survey around the Paris area) database to demonstrate the feasibility and usefulness of assimilating lidar profiles for aerosol forecasts. The evaluation shows that lidar DA is more efficient at correcting PM10 than PM2.5, probably because PM2.5 is better modelled than PM10. Furthermore, the algorithm which analyses both PM2.5and PM2.5–10 provides the best scores for PM10. The averaged root-mean-square error (RMSE) of PM10 is 11.63 μg m−3 with DA (PM2.5 and PM2.5–10), compared to 13.69 μg m−3 with DA (PM10) and 17.74 μg m−3 without DA on 1 July 2009. The averaged RMSE of PM10 is 4.73 μg m−3 with DA (PM2.5 and PM2.5–10), against 6.08 μg m−3 with DA (PM10) and 6.67 μg m−3 without DA on 26 July 2009.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference60 articles.
1. Balgovind, R., Dalcher, A., Ghil, M., and Kalnay, E.: A Stochastic-Dynamic Model for the Spatial Structure of Forecast Error Statistics, Mon. Weather Rev., 111, 701–722, 1983. 2. Bouttier, F. and Courtier, P.: Data assimilation concepts and methods, Meteorological Training Course Lecture Series, March 1999, ECMWF, Reading, UK, 2002. 3. Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models, Atmos. Environ., 40, 4946–4959, 2006. 4. Brandt, J., Silver, J. D., Frohn, L. M., Geels, C., Gross, A., Hansen, A. B., Hansen, K. M., Hedegaard, G. B., Skjøth, C. A., Villadsen, H., Zare, A., and Christensen, J. H.: An integrated model study for Europe and North America using the Danish Eulerian Hemispheric Model with focus on intercontinental transport of air pollution, Atmos. Environ., 53, 156–176, https://doi.org/10.1016/j.atmosenv.2012.01.011, 2012. 5. Chazette, P., Sanak, J., and Dulac, F.: New Approach for Aerosol Profiling with a Lidar Onboard an Ultralight Aircraft: Application to the African Monsoon Multidisciplinary Analysis, Environ. Sci. Technol., 41, 8335–8341, 2007.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|