Modelling and assimilation of lidar signals over Greater Paris during the MEGAPOLI summer campaign

Author:

Wang Y.,Sartelet K. N.,Bocquet M.ORCID,Chazette P.ORCID

Abstract

Abstract. In this study, we investigate the ability of the chemistry transport model (CTM) Polair3D of the air quality modelling platform Polyphemus to simulate lidar backscattered profiles from model aerosol concentration outputs. This investigation is an important preprocessing stage of data assimilation (validation of the observation operator). To do so, simulated lidar signals are compared to hourly lidar observations performed during the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) summer experiment in July 2009, when a ground-based mobile lidar was deployed around Paris on-board a van. The comparison is performed for six different measurement days, 1, 4, 16, 21, 26 and 29 July 2009, corresponding to different levels of pollution and different atmospheric conditions. Overall, Polyphemus well reproduces the vertical distribution of lidar signals and their temporal variability, especially for 1, 16, 26 and 29 July 2009. Discrepancies on 4 and 21 July 2009 are due to high-altitude aerosol layers, which are not well modelled. In the second part of this study, two new algorithms for assimilating lidar observations based on the optimal interpolation method are presented. One algorithm analyses PM10 (particulate matter with diameter less than 10 μm) concentrations. Another analyses PM2.5 (particulate matter with diameter less than 2.5 μm) and PM2.5–10 (particulate matter with a diameter higher than 2.5 μm and lower than 10 μm) concentrations separately. The aerosol simulations without and with lidar data assimilation (DA) are evaluated using the Airparif (a regional operational network in charge of air quality survey around the Paris area) database to demonstrate the feasibility and usefulness of assimilating lidar profiles for aerosol forecasts. The evaluation shows that lidar DA is more efficient at correcting PM10 than PM2.5, probably because PM2.5 is better modelled than PM10. Furthermore, the algorithm which analyses both PM2.5and PM2.5–10 provides the best scores for PM10. The averaged root-mean-square error (RMSE) of PM10 is 11.63 μg m−3 with DA (PM2.5 and PM2.5–10), compared to 13.69 μg m−3 with DA (PM10) and 17.74 μg m−3 without DA on 1 July 2009. The averaged RMSE of PM10 is 4.73 μg m−3 with DA (PM2.5 and PM2.5–10), against 6.08 μg m−3 with DA (PM10) and 6.67 μg m−3 without DA on 26 July 2009.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3