Summer fluxes of methane and carbon dioxide from a pond and floating mat in a continental Canadian peatland

Author:

Burger Magdalena,Berger Sina,Spangenberg Ines,Blodau Christian

Abstract

Abstract. Ponds smaller than 10 000 m2 likely account for about one-third of the global lake perimeter. The release of methane (CH4) and carbon dioxide (CO2) from these ponds is often high and significant on the landscape scale. We measured CO2 and CH4 fluxes in a temperate peatland in southern Ontario, Canada, in summer 2014 along a transect from the open water of a small pond (847 m2) towards the surrounding floating mat (5993 m2) and in a peatland reference area. We used a high-frequency closed chamber technique and distinguished between diffusive and ebullitive CH4 fluxes. CH4 fluxes and CH4 bubble frequency increased from a median of 0.14 (0.00 to 0.43) mmol m−2 h−1 and 4 events m−2 h−1 on the open water to a median of 0.80 (0.20 to 14.97) mmol m−2 h−1 and 168 events m−2 h−1 on the floating mat. The mat was a summer hot spot of CH4 emissions. Fluxes were 1 order of magnitude higher than at an adjacent peatland site. During daytime the pond was a net source of CO2 equivalents to the atmosphere amounting to 0.13 (−0.02 to 1.06) g CO2 equivalents m−2 h−1, whereas the adjacent peatland site acted as a sink of −0.78 (−1.54 to 0.29) g CO2 equivalents m−2 h−1. The photosynthetic CO2 uptake on the floating mat did not counterbalance the high CH4 emissions, which turned the floating mat into a strong net source of 0.21 (−0.11 to 2.12) g CO2 equivalents m−2 h−1. This study highlights the large small-scale variability of CH4 fluxes and CH4 bubble frequency at the peatland–pond interface and the importance of the often large ecotone areas surrounding small ponds as a source of greenhouse gases to the atmosphere.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3