Changing climatic controls on the greenhouse gas balance of thermokarst bogs during succession after permafrost thaw

Author:

Heffernan Liam1ORCID,Estop‐Aragonés Cristian2ORCID,Kuhn McKenzie A.3ORCID,Holger‐Knorr Klaus2ORCID,Olefeldt David1ORCID

Affiliation:

1. Department of Renewable Resources University of Alberta Edmonton Alberta Canada

2. Ecohydrology and Biogeochemistry Group Institute of Landscape Ecology, University of Münster Münster Germany

3. Department of Earth Sciences and Earth System Research Center Institute for the Study of Earth, Ocean and Space, University of New Hampshire Durham New Hampshire USA

Abstract

AbstractPermafrost thaw in northern peatlands causes collapse of permafrost peat plateaus and thermokarst bog development, with potential impacts on atmospheric greenhouse gas exchange. Here, we measured methane and carbon dioxide fluxes over 3 years (including winters) using static chambers along two permafrost thaw transects in northwestern Canada, spanning young (~30 years since thaw), intermediate and mature thermokarst bogs (~200 years since thaw). Young bogs were wetter, warmer and had more hydrophilic vegetation than mature bogs. Methane emissions increased with wetness and soil temperature (40 cm depth) and modelled annual estimates were greatest in the young bog during the warmest year and lowest in the mature bog during the coolest year (21 and 7 g C‐CH4 m−2 year−1, respectively). The dominant control on net ecosystem exchange (NEE) in the mature bog (between +20 and −54 g C‐CO2 m−2 year−1) was soil temperature (5 cm), causing net CO2 loss due to higher ecosystem respiration (ER) in warmer years. In contrast, wetness controlled NEE in the young and intermediate bogs (between +55 and −95 g C‐CO2 m−2 year−1), where years with periodic inundation at the beginning of the growing season caused greater reduction in gross primary productivity than in ER leading to CO2 loss. Winter fluxes (November–April) represented 16% of annual ER and 38% of annual CH4 emissions. Our study found NEE of thermokarst bogs to be close to neutral and rules out large CO2 losses under current conditions. However, high CH4 emissions after thaw caused a positive net radiative forcing effect. While wet conditions favouring high CH4 emissions only persist for the initial young bog period, we showed that continued climate warming with increased ER, and thus, CO2 losses from the mature bog can cause net positive radiative forcing which would last for centuries after permafrost thaw.

Publisher

Wiley

Reference132 articles.

1. Meteorological Controls on Water Table Dynamics in Fen Peatlands Depend on Management Regimes

2. Methods for determining emission factors for the use of peat and peatlands – Flux measurements and modelling;Alm J.;Boreal Environment Research,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3