Abstract
Abstract. Three among the existing methods of obtaining the properties (intrinsic period, wavelength, propagation direction) of atmospheric gravity waves (AGWs) were compared and studied by numerical method to simulate radar data. Three-dimensional fluctuation velocity satisfying dispersion equation and polarization relation of atmospheric gravity wave were generated, then the numerical data were analysed by these methods to obtain the properties of waves. We found that, hodograph analysis was accurate for a monochromatic wave in obtaining its wave period and propagation direction, but the analysis became erratic for the case of multiple waves' superposition. The error was especially large when data consisted of both upward propagating waves and downward propagating waves. The hodograph method became meaningful again if all the component waves propagated in the same direction and the resulting period was dominantly decided by the lowest frequency wave. Stokes parameters method would obtain statistically meaningful values of wave period and azimuth if the spreading of the azimuths among the component waves did not exceed 90° and the resulting period and azimuth were dominated by the lowest frequency wave component as well, irrespective of the vertical sense of propagation. Another method called phase and group velocity tracing technique was reconfirmed to be meaningful in measuring the characteristic wave period and vertical group and phase velocities of a wave packet: the characteristic wave period and vertical wavelength was dominated by the wave with the highest frequency among the component waves in the wave packet. Based on these numerical results, a composite procedure of data analysis for wave propagation was proposed and an example of real data analysis was presented.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献