Studies of gravity wave propagation in the mesosphere observed by MU radar

Author:

Lue H. Y.,Kuo F. S.,Fukao S.,Nakamura T.

Abstract

Abstract. Mesospheric data were analyzed by a composite method combining phase and group velocity tracing technique and the spectra method of Stokes parameter analysis to obtain the propagation parameters of atmospheric gravity waves (AGW) in the height ranges between 63.6 and 99.3 km, observed using the MU radar at Shigaraki in Japan in the months of November and July in the years 1986, 1988 and 1989. The data of waves with downward phase velocity and the data of waves with upward phase velocity were independently treated. First, the vertical phase velocity and vertical group velocity as well as the characteristic wave period for each wave packet were obtained by phase and group velocity tracing technique. Then its horizontal wavelength, intrinsic wave period and horizontal group velocity were obtained by the dispersion relation. The intrinsic frequency and azimuth of wave vector of each wave packet were checked by Stokes parameters analysis. The results showed that the waves with intrinsic periods in the range 30 min–4.5 h had horizontal wavelength ranging from 25 to 240 km, vertical wavelength from 2.5 to 12 km, and horizontal group velocities from 15 to 60 m s−1. Both upward moving wave packets and downward moving wave packets had horizontal group velocities mostly directed in the sector between directions NNE (north-north-east) and SEE in the month of November, and mostly in the sector between directions NW and SWS in the month of July. Comparing with mean wind directions, the gravity waves appeared to be more likely to propagate along with mean wind than against it. This apparent prevalence for downstream wave packets was found to be caused by a systematic filtering effect existing in the process of phase and group velocity tracing analysis: A significant portion of upstream wave packets might have been Doppler shifted out of the vertical range in phase and group velocity tracing analysis.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3