Author:
Wohlthan Michael,Pirker Gerhard,Wimmer Andreas
Abstract
Abstract. It is a great challenge to apply a diagnostic system for sensor fault detection to engine test beds. The main problem is that such test beds involve frequent configuration changes or a change in the entire test engine. Therefore, the diagnostic system must be highly adaptable to different types of test engines. This paper presents a diagnostic method consisting of the following steps: residual generation, fault detection and fault isolation. As adaptability can be achieved with residual generation, the focus is on this step. The modular toolbox-based approach combines physics-based and data-driven modeling concepts and, thus, enables highly flexible application to various types of engine test beds. Adaptability and fault detection quality are validated using measurement data from a single-cylinder research engine and a multicylinder diesel engine.
Funder
Österreichische Forschungsförderungsgesellschaft
Subject
Electrical and Electronic Engineering,Instrumentation
Reference13 articles.
1. Clever, S. and Isermann, R.: Modellgestützte Fehlererkennung und Diagnose
für Common-Rail-Einspritzsysteme, Motortechnische Zeitschrift – MTZ, 71,
114–121, https://doi.org/10.1007/BF03225548, 2010. a
2. Flohr, A.: Konzept und Umsetzung einer Online-Messdatendiagnose an Motorenprüfständen, Dissertation, Technische Universität Darmstadt, Darmstadt, http://elib.tu-darmstadt.de/diss/000632 (last access: 25 March 2022), 2005. a
3. Fritz, S. C.: Entwicklung und Umsetzung einer zentralisierten
Messdatendiagnose für Motorprüfstände als integrierter Bestandteil des Prüfstandssystems, Dissertation, Technische Universität Darmstadt, Darmstadt, https://tubiblio.ulb.tu-darmstadt.de/31088/ (last access: 25 March 2022), 2008. a
4. Gagliardi, G., Tedesco, F., and Casavola, A.: A LPV modeling of turbocharged
spark-ignition automotive engine oriented to fault detection and isolation
purposes, J. Franklin Inst., 355, 6710–6745, https://doi.org/10.1016/j.jfranklin.2018.06.038, 2018.
a
5. Jung, D.: Engine Fault Diagnosis Combining Model-based Residuals and
Data-Driven Classifiers, IFAC-PapersOnLine, 52, 285–290,
https://doi.org/10.1016/j.ifacol.2019.09.046, 2019. a
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献