A modular adaptive residual generator for a diagnostic system that detects sensor faults on engine test beds

Author:

Wohlthan Michael,Pirker Gerhard,Wimmer Andreas

Abstract

Abstract. It is a great challenge to apply a diagnostic system for sensor fault detection to engine test beds. The main problem is that such test beds involve frequent configuration changes or a change in the entire test engine. Therefore, the diagnostic system must be highly adaptable to different types of test engines. This paper presents a diagnostic method consisting of the following steps: residual generation, fault detection and fault isolation. As adaptability can be achieved with residual generation, the focus is on this step. The modular toolbox-based approach combines physics-based and data-driven modeling concepts and, thus, enables highly flexible application to various types of engine test beds. Adaptability and fault detection quality are validated using measurement data from a single-cylinder research engine and a multicylinder diesel engine.

Funder

Österreichische Forschungsförderungsgesellschaft

Publisher

Copernicus GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Reference13 articles.

1. Clever, S. and Isermann, R.: Modellgestützte Fehlererkennung und Diagnose für Common-Rail-Einspritzsysteme, Motortechnische Zeitschrift – MTZ, 71, 114–121, https://doi.org/10.1007/BF03225548, 2010. a

2. Flohr, A.: Konzept und Umsetzung einer Online-Messdatendiagnose an Motorenprüfständen, Dissertation, Technische Universität Darmstadt, Darmstadt, http://elib.tu-darmstadt.de/diss/000632 (last access: 25 March 2022), 2005. a

3. Fritz, S. C.: Entwicklung und Umsetzung einer zentralisierten Messdatendiagnose für Motorprüfstände als integrierter Bestandteil des Prüfstandssystems, Dissertation, Technische Universität Darmstadt, Darmstadt, https://tubiblio.ulb.tu-darmstadt.de/31088/ (last access: 25 March 2022), 2008. a

4. Gagliardi, G., Tedesco, F., and Casavola, A.: A LPV modeling of turbocharged spark-ignition automotive engine oriented to fault detection and isolation purposes, J. Franklin Inst., 355, 6710–6745, https://doi.org/10.1016/j.jfranklin.2018.06.038, 2018.  a

5. Jung, D.: Engine Fault Diagnosis Combining Model-based Residuals and Data-Driven Classifiers, IFAC-PapersOnLine, 52, 285–290, https://doi.org/10.1016/j.ifacol.2019.09.046, 2019. a

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3