Investigating the anatomy of magnetosheath jets – MMS observations

Author:

Karlsson TomasORCID,Plaschke FerdinandORCID,Hietala HeliORCID,Archer MartinORCID,Blanco-Cano Xóchitl,Kajdič Primož,Lindqvist Per-ArneORCID,Marklund Göran,Gershman Daniel J.

Abstract

Abstract. We use Magnetosphere Multiscale (MMS) mission data to investigate a small number of magnetosheath jets, which are localized and transient increases in dynamic pressure, typically due to a combined increase in plasma velocity and density. For two approximately hour-long intervals in November, 2015 we found six jets, which are of two distinct types. (a) Two of the jets are associated with the magnetic field discontinuities at the boundary between the quasi-parallel and quasi-perpendicular magnetosheath. Straddling the boundary, the leading part of these jets contains an ion population similar to the quasi-parallel magnetosheath, while the trailing part contains ion populations similar to the quasi-perpendicular magnetosheath. Both populations are, however, cooler than the surrounding ion populations. These two jets also have clear increases in plasma density and magnetic field strength, correlated with a velocity increase. (b) Three of the jets are found embedded within the quasi-parallel magnetosheath. They contain ion populations similar to the surrounding quasi-parallel magnetosheath, but with a lower temperature. Out of these three jets, two have a simple structure. For these two jets, the increases in density and magnetic field strength are correlated with the dynamic pressure increases. The other jet has a more complicated structure, and no clear correlations between density, magnetic field strength and dynamic pressure. This jet has likely interacted with the magnetosphere, and contains ions similar to the jets inside the quasi-parallel magnetosheath, but shows signs of adiabatic heating. All jets are associated with emissions of whistler, lower hybrid, and broadband electrostatic waves, as well as approximately 10 s period electromagnetic waves with a compressional component. The latter have a Poynting flux of up to 40 µW m−2 and may be energetically important for the evolution of the jets, depending on the wave excitation mechanism. Only one of the jets is likely to have modified the surrounding magnetic field into a stretched configuration, as has recently been reported in other studies. None of the jets are associated with clear signatures of either magnetic or thermal pressure gradient forces acting on them. The different properties of the two types also point to different generation mechanisms, which are discussed here. Their different properties and origins suggest that the two types of jets need to be separated in future statistical and simulation studies. Keywords. Magnetospheric physics (magnetosheath; plasma waves and instabilities; solar wind–magnetosphere interactions)

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference70 articles.

1. Amata, E., Savin, S. P., Ambrosino, D., Bogdanova, Y. V., Marcucci, M. F., Romanov, S., and Skalsky, A.: High kinetic energy density jets in the Earth's magnetosheath: A case study, Planet. Space Sci., 59, 482–494, https://doi.org/10.1016/j.pss.2010.07.021, 2011. a, b, c, d

2. André, M., Behlke, R., Wahlund, J.-E., Vaivads, A., Eriksson, A.-I., Tjulin, A., Carozzi, T. D., Cully, C., Gustafsson, G., Sundkvist, D., Khotyaintsev, Y., Cornilleau-Wehrlin, N., Rezeau, L., Maksimovic, M., Lucek, E., Balogh, A., Dunlop, M., Lindqvist, P.-A., Mozer, F., Pedersen, A., and Fazakerley, A.: Multi-spacecraft observations of broadband waves near the lower hybrid frequency at the Earthward edge of the magnetopause, Ann. Geophys., 19, 1471–1481, https://doi.org/10.5194/angeo-19-1471-2001, 2001. a

3. Archer, M. O. and Horbury, T. S.: Magnetosheath dynamic pressure enhancements: occurrence and typical properties, Ann. Geophys., 31, 319–331, https://doi.org/10.5194/angeo-31-319-2013, 2013. a, b, c, d, e, f, g, h, i, j, k, l

4. Archer, M. O., Horbury, T. S., and Eastwood, J. P.: Magnetosheath pressure pulses: Generation downstream of the bow shock from solar wind discontinuities, J. Geophys. Res., 117, A05228, https://doi.org/10.1029/2011JA017468, 2012. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o

5. Archer, M. O., Hartinger, M. D., and Horbury, T. S.: Magnetospheric ”magic” frequencies as magnetopause surface eigenmodes, Geophys. Res. Lett., 40, 5003–5008, https://doi.org/10.1002/grl.50979, 2013a. a

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scale size estimation and flow pattern recognition around a magnetosheath jet;Annales Geophysicae;2024-06-13

2. Candidates for downstream jets at interplanetary shocks;Monthly Notices of the Royal Astronomical Society;2024-05-20

3. Cluster: List of plasma jets in the subsolar magnetosheath;Frontiers in Astronomy and Space Sciences;2024-05-14

4. Jets and Mirror Mode Waves in Earth's Magnetosheath;Journal of Geophysical Research: Space Physics;2023-07

5. Waves in Magnetosheath Jets—Classification and the Search for Generation Mechanisms Using MMS Burst Mode Data;Journal of Geophysical Research: Space Physics;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3