Waves in Magnetosheath Jets—Classification and the Search for Generation Mechanisms Using MMS Burst Mode Data

Author:

Krämer E.1ORCID,Hamrin M.1ORCID,Gunell H.1ORCID,Karlsson T.2ORCID,Steinvall K.3ORCID,Goncharov O.4ORCID,André Mats3ORCID

Affiliation:

1. Departement of Physics Umeå University Umeå Sweden

2. Division of Space and Plasma Physics School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm Sweden

3. Swedish Institute of Space Physics Uppsala Sweden

4. Faculty of Mathematics and Physics Charles University Prague Czech Republic

Abstract

AbstractMagnetosheath jets are localized dynamic pressure enhancements in the magnetosheath. We make use of the high time resolution burst mode data of the Magnetospheric Multiscale mission for an analysis of waves in plasmas associated with three magnetosheath jets. We find both electromagnetic and electrostatic waves over the frequency range from 0 to 4 kHz that can be probed by the instruments on board the MMS spacecraft. At high frequencies we find electrostatic solitary waves, electron acoustic waves, and whistler waves. Electron acoustic waves and whistler waves show the typical properties expected from theory assuming approximations of a homogeneous plasma and linearity. In addition, 0.2 Hz waves in the magnetic field, 1 Hz electromagnetic waves, and lower hybrid waves are observed. For these waves the approximation of a homogeneous plasma does not hold anymore and the observed waves show properties from several different basic wave modes. In addition, we investigate how the various types of waves are generated. We show evidence that, the 1 Hz waves are connected to gradients in the density and magnetic field. The whistler waves are generated by a butterfly‐shaped pitch‐angle distribution and the electron acoustic waves by a cold electron population. The lower hybrid waves are probably generated by currents at the boundary of the jets. As for the other waves we can only speculate about the generation mechanism due to limitations of the instruments. Studying waves in jets will help to address the microphysics in jets which can help to understand the evolution of jets better.

Funder

Vetenskapsrådet

Swedish National Space Agency

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3