Capturing synoptic-scale variations in surface aerosol pollution using deep learning with meteorological data
-
Published:2023-01-10
Issue:1
Volume:23
Page:375-388
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Feng JinORCID, Li Yanjie, Qiu Yulu, Zhu Fuxin
Abstract
Abstract. The estimation of daily variations in aerosol concentrations using meteorological data is meaningful and challenging, given the need for accurate air quality forecasts and assessments. In this study, a 3×50-layer spatiotemporal deep learning (DL) model is proposed to link synoptic variations in aerosol concentrations and meteorology, thereby building a “deep” Weather Index for Aerosols (deepWIA). The model was trained and validated using 7 years of data and tested in January–April 2022. The index successfully reproduced the variation in daily PM2.5 observations in China. The coefficient of determination
between PM2.5 concentrations calculated from the index and observation
was 0.72, with a root mean square error (RMSE) of 16.5 µg m−3. The DeepWIA performed better than Weather Forecast and Research (WRF)-Chem simulations for eight aerosol-polluted cities in China. The simulating power of the model also outperformed commonly used PM2.5 concentration retrieval models based on random forest (RF), extreme gradient boost (XGB), and multilayer perceptron (MLP). The index and the DL model can be used as robust tools for estimating daily variations in aerosol concentrations.
Funder
National Natural Science Foundation of China National Key Research and Development Program of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference40 articles.
1. Bei, N., Li, G., Huang, R.-J., Cao, J., Meng, N., Feng, T., Liu, S., Zhang,
T., Zhang, Q., and Molina, L. T.: Typical synoptic situations and their impacts on the wintertime air pollution in the Guanzhong basin, China, Atmos. Chem. Phys., 16, 7373–7387, https://doi.org/10.5194/acp-16-7373-2016, 2016. 2. Chen, Z. H., Cheng, S. Y., Li, J. B., Guo, X. R., Wang, W. H., and Chen, D.
S.: Relationship between atmospheric pollution processes and synoptic pressure patterns in northern China, Atmos. Environ., 42, 6078–6087, https://doi.org/10.1016/j.atmosenv.2008.03.043, 2008. 3. Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y.: On the Properties of Neural Machine Translation: Encoder-Decoder Approaches, arXiv [preprint], arXiv:1409.1259, https://doi.org/10.48550/arXiv.1409.1259, 2014. 4. Feng, J.: Data for “Capturing synoptic-scale variations in surface aerosol pollution using deep learning with meteorological data”, Zenodo [data set], https://doi.org/10.5281/zenodo.6982879, 2022a. 5. Feng, J.: Animation for “Capturing synoptic-scale variations in surface aerosol pollution using deep learning with meteorological data”, Zenodo [video/audio], https://doi.org/10.5281/zenodo.6982971, 2022b.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|