Regional aerosol forecasts based on deep learning and numerical weather prediction

Author:

Qiu Yulu,Feng JinORCID,Zhang Ziyin,Zhao Xiujuan,Li Ziming,Ma Zhiqiang,Liu RuijinORCID,Zhu Jia

Abstract

AbstractAtmospheric chemistry transport models have been extensively applied in aerosol forecasts over recent decades, whereas they are facing challenges from uncertainties in emission rates, meteorological data, and over-simplified chemical parameterizations. Here, we developed a spatial-temporal deep learning framework, named PPN (Pollution-Predicting Net for PM2.5), to accurately and efficiently predict regional PM2.5 concentrations. It has an encoder-decoder architecture and combines the preceding PM2.5 observations and numerical weather prediction. Besides, the model proposes a weighted loss function to promote the forecasting performance in extreme events. We applied the proposed model to forecast 3-day PM2.5 concentrations over the Beijing-Tianjin-Hebei region in China on a three-hour-by-three-hour basis. Overall, the model showed good performance with R2 and RMSE values of 0.7 and 17.7 μg m−3, respectively. It could capture the high PM2.5 concentration in the south and relatively low concentration in the north and exhibit better performance within the next 24 h. The use of the weighted loss function decreased the level of “high values underestimation, low values overestimation”, while incorporating the preceding PM2.5 observations into the encoder phase improved the predictive accuracy within 24 h. We also compared the model result with that from a state-of-the-art numerical model (WRF-Chem with pollutant data assimilation). The temporal R2 and RMSE from the WRF-Chem were 0.30−0.77 and 19−45 μg m−3 while those from the PPN model were 0.42−0.84 and 15−42 μg m−3. The proposed model shows powerful capacity in aerosol forecasts and provides an efficient and accurate tool for early warning and management of regional pollution events.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

the Open fund by Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3