Modeling general circulation model bias via a combination of localized regression and quantile mapping methods

Author:

Washington Benjamin James,Seymour LynneORCID,Mote Thomas L.ORCID

Abstract

Abstract. General circulation model (GCM) outputs are a primary source of information for climate change impact assessments. However, raw GCM data rarely are used directly for regional-scale impact assessments as they frequently contain systematic error or bias. In this article, we propose a novel extension to standard quantile mapping that allows for a continuous seasonal change in bias magnitude using localized regression. Our primary goal is to examine the efficacy of this tool in the context of larger statistical downscaling efforts on the tropical island of Puerto Rico, where localized downscaling can be particularly challenging. Along the way, we utilize a multivariate infilling algorithm to estimate missing data within an incomplete climate data network spanning Puerto Rico. Next, we apply a combination of multivariate downscaling methods to generate in situ climate projections at 23 locations across Puerto Rico from three general circulation models in two carbon emission scenarios: RCP4.5 and RCP8.5. Finally, our bias-correction methods are applied to these downscaled GCM climate projections. These bias-correction methods allow GCM bias to vary as a function of a user-defined season (here, Julian day). Bias is estimated using a continuous curve rather than a moving window or monthly breaks. Results from the selected ensemble agree that Puerto Rico will continue to warm through the coming century. Under the RCP4.5 forcing scenario, our methods indicate that the dry season will have increased rainfall, while the early and late rainfall seasons will likely have a decline in total rainfall. Our methods applied to the RCP8.5 forcing scenario favor a wetter climate for Puerto Rico, driven by an increase in the frequency of high-magnitude rainfall events during Puerto Rico's early rainfall season (April to July) as well as its late rainfall season (August to November).

Publisher

Copernicus GmbH

Subject

Applied Mathematics,Atmospheric Science,Statistics and Probability,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3