Probabilistic Gaussian Copula Regression Model for Multisite and Multivariable Downscaling

Author:

Ben Alaya M. A.1,Chebana F.1,Ouarda T. B. M. J.2

Affiliation:

1. Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Quebec, Quebec, Canada

2. Institute Center for Water and Environment (iWater), Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates, and Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Quebec, Quebec, Canada

Abstract

Abstract Atmosphere–ocean general circulation models (AOGCMs) are useful to simulate large-scale climate evolutions. However, AOGCM data resolution is too coarse for regional and local climate studies. Downscaling techniques have been developed to refine AOGCM data and provide information at more relevant scales. Among a wide range of available approaches, regression-based methods are commonly used for downscaling AOGCM data. When several variables are considered at multiple sites, regression models are employed to reproduce the observed climate characteristics at small scale, such as the variability and the relationship between sites and variables. This study introduces a probabilistic Gaussian copula regression (PGCR) model for simultaneously downscaling multiple variables at several sites. The proposed PGCR model relies on a probabilistic framework to specify the marginal distribution for each downscaled variable at a given day through AOGCM predictors, and handles multivariate dependence between sites and variables using a Gaussian copula. The proposed model is applied for the downscaling of AOGCM data to daily precipitation and minimum and maximum temperatures in the southern part of Quebec, Canada. Reanalysis products are used in this study to assess the potential of the proposed method. Results of the study indicate the superiority of the proposed model over classical regression-based methods and a multivariate multisite statistical downscaling model.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3