In-situ observations and modeling of small nitric acid-containing ice crystals
-
Published:2007-06-27
Issue:12
Volume:7
Page:3373-3383
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Voigt C.,Kärcher B.,Schlager H.,Schiller C.,Krämer M.,de Reus M.,Vössing H.,Borrmann S.,Mitev V.
Abstract
Abstract. Measurements in nascent ice forming regions are very rare and help understand cirrus cloud formation and the interactions of trace gases with ice crystals. A tenuous cirrus cloud has been probed with in-situ and remote sensing instruments onboard the high altitude research aircraft Geophysica M55 in the tropical upper troposphere. Besides microphysical and optical particle properties, water (H2O) and reactive nitrogen species (NOy) have been measured. In slightly ice supersaturated air between 14.2 and 14.9 km altitude, an unusually low ice water content of 0.031 mg m−3 and small ice crystals with mean radii of 5 µm have been detected. A high nitric acid to water molar ratio (HNO3/H2O) of 5.4×10−5 has been observed in the ice crystals, about an order of magnitude higher compared to previous observations in cirrus at temperatures near 202 K. A model describing the trapping of HNO3 in growing ice particles shows that a high HNO3 content in ice crystals is expected during early growth stages, mainly originating from uptake in aerosol particles prior to freezing. Water vapor deposition on ice crystals and trapping of additional HNO3 reduces the molar ratio to values close to the ratio of HNO3/H2O in the gas phase while the cloud ages.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference30 articles.
1. Borrmann, S., Solomon, S. Dye, J E., and Luo, B.: The potential of cirrus clouds for heterogeneous chlorine activation, Geophys. Res. Lett., 23(16), 2133–2136, https://doi.org/10.1029/96GL01957, 1996. 2. Borrmann, S., Thomas, A., Rudakov, A., Yushkov, V., Lepuchov, B., Deshler, T., Vinnichenko, N., Khattatov, V., and Stefanutti, L.: In-situ measurements in the Northern hemispheric stratosphere of the 1996/1997 winter on the Russian M-55 Geophysica high altitude research aircraft, Tellus, 52B, 1088–1103, 2000. 3. Fahey, D W., Eubank, C S., Huebler, G., and Fehsenfeld, F C.: Evaluation of a catalytic reduction technique, J. Atmos. Chem., 3, 435–468, 1985. 4. Gao, R S., Popp, P J., Fahey, D W., Marcy, T P., Herman, R L., Weinstock, E M., Baumgardner, D G., Garrett, T J., Rosenlof, K H., Thompson, T L., Bui, T P., Ridley, B A., Wofsy, S C., Toon, O B., Tolbert, M A., Kärcher, B., Peter, Th., Hudson, P K., Weinheimer, A J., and Heymsfield, A J.: Evidence that ambient nitric acid increases relative humidity in low-temperature cirrus clouds, Science, 303, 516–520, 2004. 5. Gamblin B., Toon, O B., Tolbert, M A., Kondo, Y., Takegawa, N., Irie, H., Koike, M., Ballenthin, J O., Hunton, D E., Miller, T M., Viggiano, A A., Anderson, B E., Avery, M., Sachse, G W., Podolske, J R., Guenther, K., Sorenson, C., and Mahoney, M J.: Nitric acid condensation on ice: 1. Non-HNO3 constituent of NOy condensing cirrus particles on upper tropospheric, J. Geophys. Res., 111, D21203, https://doi.org/10.1029/2005JD006048, 2006.
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|