Towards near-real-time air pollutant and greenhouse gas emissions: lessons learned from multiple estimates during the COVID-19 pandemic

Author:

Guevara MarcORCID,Petetin HervéORCID,Jorba OriolORCID,Denier van der Gon HugoORCID,Kuenen JeroenORCID,Super IngridORCID,Granier Claire,Doumbia Thierno,Ciais PhilippeORCID,Liu ZhuORCID,Lamboll Robin D.,Schindlbacher Sabine,Matthews BradleyORCID,Pérez García-Pando CarlosORCID

Abstract

Abstract. The 2020 COVID-19 crisis caused an unprecedented drop in anthropogenic emissions of air pollutants and greenhouse gases. Given that emissions estimates from official national inventories for the year 2020 were not reported until 2 years later, new and non-traditional datasets to estimate near-real-time emissions became particularly relevant and widely used in international monitoring and modelling activities during the pandemic. This study investigates the impact of the COVID-19 pandemic on 2020 European (the 27 EU member states and the UK) emissions by comparing a selection of such near-real-time emission estimates, with the official inventories that were subsequently reported in 2022 under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) and the United Nations Framework Convention on Climate Change (UNFCCC). Results indicate that annual changes in total 2020 emissions reported by official and near-real-time estimates are fairly in line for most of the chemical species, with NOx and fossil fuel CO2 being reported as the ones that experienced the largest reduction in Europe in all cases. However, large discrepancies arise between the official and non-official datasets when comparing annual results at the sector and country level, indicating that caution should be exercised when estimating changes in emissions using specific near-real-time activity datasets, such as time mobility data derived from smartphones. The main examples of these differences are observed for the manufacturing industry NOx (relative changes ranging between −21.4 % and −5.4 %) and road transport CO2 (relative changes ranging between −29.3 % and −5.6 %) total European emissions. Additionally, significant discrepancies are observed between the quarterly and monthly distribution of emissions drops reported by the various near-real-time inventories, with differences of up to a factor of 1.5 for total NOx during April 2020, when restrictions were at their maximum. For residential combustion, shipping and the public energy industry, results indicate that changes in emissions that occurred between 2019 and 2020 were mainly dominated by non-COVID-19 factors, including meteorology, the implementation of the Global Sulphur Cap and the shutdown of coal-fired power plants as part of national decarbonization efforts, respectively. The potential increase in NMVOC emissions from the intensive use of personal protective equipment such as hand sanitizer gels is considered in a heterogeneous way across countries in officially reported inventories, indicating the need for some countries to base their calculations on more advanced methods. The findings of this study can be used to better understand the uncertainties in near-real-time emissions and how such emissions could be used in the future to provide timely updates to emission datasets that are critical for modelling and monitoring applications.

Funder

Agencia Estatal de Investigación

Ministerio de Ciencia e Innovación

AXA Research Fund

H2020 European Research Council

European Centre for Medium-Range Weather Forecasts

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference53 articles.

1. Badia, A., Langemeyer, J., Codina, X., Gilabert, J., Guilera, N., Vidal, V., Segura, R., Vives, M., and Villalba, G.: A take-home message from COVID-19 on urban air pollution reduction through mobility limitations and teleworking, Urban Sustain., 1, 35, https://doi.org/10.1038/s42949-021-00037-7, 2021.

2. Barré, J., Petetin, H., Colette, A., Guevara, M., Peuch, V.-H., Rouil, L., Engelen, R., Inness, A., Flemming, J., Pérez García-Pando, C., Bowdalo, D., Meleux, F., Geels, C., Christensen, J. H., Gauss, M., Benedictow, A., Tsyro, S., Friese, E., Struzewska, J., Kaminski, J. W., Douros, J., Timmermans, R., Robertson, L., Adani, M., Jorba, O., Joly, M., and Kouznetsov, R.: Estimating lockdown-induced European NO2 changes using satellite and surface observations and air quality models, Atmos. Chem. Phys., 21, 7373–7394, https://doi.org/10.5194/acp-21-7373-2021, 2021.

3. BEIS: Provisional UK greenhouse gas emissions national statistics, 2021, https://www.gov.uk/government/statistics/provisional-uk-greenhouse-gas-emissions-national-statistics-2021 (last access: January 2023), 2022. C3S (Copernicus Climate Change Service): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), https://cds.climate.copernicus.eu/cdsapp#!/home (last access: May 2021), 2017.

4. C3S (Copernicus Climate Change Service): Climate bulletin. European State of the Climate 2020, Warm winter, https://climate.copernicus.eu/esotc/2020/warm-winter (last access: October 2022), 2020a.

5. Castellanos, P. and Boersma, K.: Reductions in nitrogen oxides over Europe driven by environmental policy and economic recession, Sci. Rep., 2, 265, https://doi.org/10.1038/srep00265, 2012.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3