Direct observation for relative-humidity-dependent mixing states of submicron particles containing organic surfactants and inorganic salts

Author:

Xiong Chun,Kuang Binyu,Zhang FeiORCID,Pei Xiangyu,Xu Zhengning,Wang Zhibin

Abstract

Abstract. Aerosol mixing state plays an important role in heterogeneous reactions and cloud condensation nuclei (CCN) activity. Organic surfactants could affect aerosol mixing state through bulk–surface partitioning. However, the mixing state of surfactant-containing particles remains unclear due to the lack of direct measurements. Here, direct characterizations of the mixing state for 20 kinds of submicron particles containing inorganic salts (NaCl and (NH4)2SO4) and atmospheric organic surfactants (organosulfates, organosulfonates, and dicarboxylic acids) were conducted upon relative humidity (RH) cycling by environmental scanning electron microscopy (ESEM). As the RH increased, the surfactant shells inhibited water diffusion being exposed to the inorganic core, leading to notably increased inorganic deliquescence RH (88.3 %–99.5 %) when compared with pure inorganic aerosol. Meanwhile, we directly observed an obvious Ostwald ripening process (that is, the growth of larger crystals at the expense of smaller ones) in 6 out of 10 NaCl–organic surfactant systems. As a result of water inhibition by the organic surfactant shell, Ostwald ripening in all systems occurred at RH above 90 %, which were higher than the reported RH range for pure NaCl measured at 27 ∘C (75 %–77 %). As RH decreased, eight systems underwent liquid–liquid-phase separation (LLPS) before efflorescence, showing a strong dependence on the organic molecular oxygen-to-carbon ratio (O:C). Quantitatively, LLPS was always observed when O:C≤0.43 and was never observed when O:C>∼0.57. Separation RH (SRH) of inorganic salt–organic surfactant mixtures generally followed the trend of (NH4)2SO4 < NaCl, which is consistent with their salting-out efficiencies reported in previous studies. Solid-phase separations were observed after efflorescence for systems without LLPS. Our results provide a unique insight into the consecutive mixing processes of the inorganic salt–organic surfactant particles, which would help improve our fundamental knowledge of model development on radiative effect.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Jiangxi Province

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3