Measurement report: Inland ship emissions and their contribution to NOx and ultrafine particle concentrations at the Rhine

Author:

Eger PhilippORCID,Mathes Theresa,Zavarsky AlexORCID,Duester Lars

Abstract

Abstract. Emission plumes of around 4700 ship passages were detected between March 2021 and June 2022 in the Upper Rhine Valley in Worms, Germany. In combination with ship-related data recorded via the automatic identification system (AIS), the plume composition of individuals ships was analyzed, and it was possible to quantify their contribution to the overall emission load. To obtain an integral picture of inland ship emissions, nitrogen oxide (NOx = NO + NO2) and carbon dioxide (CO2) measurements in the gas phase were combined with detailed particle-phase measurements including particle number concentration (PNC), particle size distribution (PSD) from 5 nm to 10 µm, particulate matter (PM1 and PM2.5), ultrafine particle fraction (UFP, diameter < 100 nm) and aerosol black carbon (BC). One measuring station was located inside a bridge directly above the navigation channel and was especially helpful in deriving emission factors under real-world driving conditions for the fleet on the Upper Rhine. The other station was situated on a riverbank at about 40 m distance to the shipping lane and was thus representative of the exposure of people working or living close to the Rhine. Inland ships contributed 1.2 µg m−3 or 7 % on average to the local nitrogen dioxide (NO2) concentration at the bridge above the shipping lane. NOx concentrations were increased by 10.5 µg m−3 (50 %), PNC by 800 cm−3 (10 %), PM1 by 0.4 µg m−3 (4 %) and BC by 0.15 µg m−3 (15 %). On the riverbank a NOx increase of 1.6 µg m−3 (8 %) and an NO2 increase of 0.4 µg m−3 (3 %) were observed. More than 75 % of emitted particles were found in the UFP range with a geometric mean particle diameter of 52±23 nm. Calculated emission factors (25–75 percentiles) were 26–44 g kg−1 of fuel for NOx, 1.9–3.2 g kg−1 for NO2, 0.3–0.7 g kg−1 for BC, 0.9–2.3 g kg−1 for PM1 and (1–3) × 1015 kg−1 for PNC, with a large variability observed from ship to ship. Relating these values to ship-specific parameters revealed the importance of engine characteristics, i.e., vessels using old motors with low revolutions per minute (rpm) caused comparably high emission factors for both NOx and PNC. A comparison with emission regulation limits set by the Central Commission for the Navigation of the Rhine (CCNR) and the European Union (EU) showed that – within the uncertainty of our calculation method – mean energy-dependent emission factors under real-driving conditions were slightly exceeding those under controlled laboratory conditions. The results from this study underline the importance of long-term measurements with high temporal resolution to reliably estimate the contribution of inland shipping to air pollution in cities along heavy traffic waterways and to monitor a potential future emission reduction when modernizing the fleet.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference76 articles.

1. Alföldy, B., Lööv, J. B., Lagler, F., Mellqvist, J., Berg, N., Beecken, J., Weststrate, H., Duyzer, J., Bencs, L., Horemans, B., Cavalli, F., Putaud, J. P., Janssens-Maenhout, G., Csordás, A. P., Van Grieken, R., Borowiak, A., and Hjorth, J.: Measurements of air pollution emission factors for marine transportation in SECA, Atmos. Meas. Tech., 6, 1777–1791, https://doi.org/10.5194/amt-6-1777-2013, 2013.

2. Ausmeel, S., Eriksson, A., Ahlberg, E., and Kristensson, A.: Methods for identifying aged ship plumes and estimating contribution to aerosol exposure downwind of shipping lanes, Atmos. Meas. Tech., 12, 4479–4493, https://doi.org/10.5194/amt-12-4479-2019, 2019.

3. Barone, T. L., Lall, A. A., Storey, J. M. E., Mulholland, G. W., Prikhodko, V. Y., Frankland, J. H., Parks, J. E., and Zachariah, M. R.: Size-Resolved Density Measurements of Particle Emissions from an Advanced Combustion Diesel Engine: Effect of Aggregate Morphology, Energy Fuels, 25, 1978–1988, https://doi.org/10.1021/ef200084k, 2011.

4. Beecken, J., Mellqvist, J., Salo, K., Ekholm, J., and Jalkanen, J. P.: Airborne emission measurements of SO2, NOx and particles from individual ships using a sniffer technique, Atmos. Meas. Tech., 7, 1957–1968, https://doi.org/10.5194/amt-7-1957-2014, 2014.

5. Beecken, J., Mellqvist, J., Salo, K., Ekholm, J., Jalkanen, J. P., Johansson, L., Litvinenko, V., Volodin, K., and Frank-Kamenetsky, D. A.: Emission factors of SO2, NOx and particles from ships in Neva Bay from ground-based and helicopter-borne measurements and AIS-based modeling, Atmos. Chem. Phys., 15, 5229–5241, https://doi.org/10.5194/acp-15-5229-2015, 2015.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3