Effects of <i>Y</i>-type spillway lateral contraction ratios on debris-flowpatterns and scour features downriver of a check dam

Author:

Chen HuayongORCID,Liu Jinfeng,Zhao Wanyu

Abstract

Abstract. Debris flows often cause devastating damage to property and can injure or kill residents in mountainous areas. The construction of check dams in debris-flow valleys is considered a useful strategy for mitigating the damages downstream. In this paper, a new type of spillway structure with lateral contraction was proposed to distribute debris flows after the check dam storage filled up. Four different lateral contraction ratios of the spillway were considered in experiments that investigated debris-flow patterns, scour characteristics, and energy dissipation rates when debris flows passed through the spillway. The results indicated that lateral contraction considerably influenced the extension of debris-flow nappes. The drop length of the nappe at η  =  0.7 (η means lateral contraction ratio) was approximately 1.4 times larger than at η  =  0.4. The collision, friction, and mixing forces between the debris-flow nappes and debris flows in downstream plunge pools dissipated much of the debris-flow kinetic energy, ranging from 42.03 to 78.08 % at different contraction ratios. Additionally, based on a dimensionless analysis, an empirical model was proposed to predict the maximum scour depth downriver of a check dam. It indicated that the results calculated by the model exhibited good agreement with the experimental results.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3