Calibration and validation of FLFA<sub>rs</sub> -- a new flood loss function for Australian residential structures

Author:

Hasanzadeh Nafari R.ORCID,Ngo T.,Lehman W.

Abstract

Abstract. Rapid urbanisation, climate change and unsustainable developments are increasing the risk of floods. Flood is a frequent natural hazard that has significant financial consequences for Australia. The emergency response system in Australia is very successful and has saved many lives over the years. However, the preparedness for natural disaster impacts in terms of loss reduction and damage mitigation has been less successful. In this paper, a newly derived flood loss function for Australian residential structures (FLFArs) has been presented and calibrated by using historic data collected from an extreme event in Queensland, Australia, that occurred in 2013. Afterwards, the performance of the method developed in this work (contrasted to one Australian model and one model from USA) has been compared with the observed damage data collected from a 2012 flood event in Maranoa, Queensland. Based on this analysis, validation of the selected methodologies has been performed in terms of Australian geographical conditions. Results obtained from the new empirically based function (FLFArs) and the other models indicate that it is apparent that the precision of flood damage models is strongly dependent on selected stage damage curves, and flood damage estimation without model calibration might result in inaccurate predictions of losses. Therefore, it is very important to be aware of the associated uncertainties in flood risk assessment, especially if models have not been calibrated with real damage data.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference55 articles.

1. André, C., Monfort, D., Bouzit, M., and Vinchon, C.: Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events, Nat. Hazards Earth Syst. Sci., 13, 2003–2012, https://doi.org/10.5194/nhess-13-2003-2013, 2013.

2. Apel, H., Aronica, G. T., Kreibich, H., and Thieken, A. H.: Flood risk analyses – how detailed do we need to be?, Nat. Hazards, 49, 79–98, 2009.

3. Barton, C., Viney, E., Heinrich, L., and Turnley, M.: The Reality of Determining Urban Flood Damages, in: NSW Floodplain Management Authorities Annual Conference, Sydney, 2003.

4. Bundaberg Regional Council: Burnett River Floodplain – Bundaberg Ground Elevations [WWW Document], available at: http://www.bundaberg.qld.gov.au/flood/mapping (last access: 30 September 2015), 2013a.

5. Bundaberg Regional Council: Burnett River Catchment Map [WWW Document], available at: http://www.bundaberg.qld.gov.au/flood/mapping (last access: 30 September 2015), 2013b.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3