Intriguing diversity among diazotrophic picoplankton along a Mediterranean transect: from the origin of plastids to the dominance of rhizobia
Author:
Le Moal M.,Collin H.,Biegala I. C.
Abstract
Abstract. The Mediterranean Sea is one of the most oligotrophic marine areas on earth where nitrogen fixation has been formally believed to play an important role in carbon and nitrogen fluxes. Although this view is under debate, the diazotrophs responsible for this activity have still not been investigated in the open sea. In this study we characterised the surface distribution and species richness of unicellular and filamentous diazotrophs across the Mediterranean Sea by combining microscopic counts with size fractionated in situ hybridization (TSA-FISH), and 16S rDNA and nifH phylogenies. These genetic analyses were possible owning to the development of a new PCR protocol adapted for scarce microorganisms (0.2 cell ml−1). Low concentrations of diazotrophic cyanobacteria were detected and this community was dominated at 99.9% by picoplankton hybridized with Nitro821 probe, specific for unicellular diazotrophic cyanobacteria (UCYN). Among filamentous cyanobacteria only 0.02 filament ml−1 of Richelia were detected in the eastern basin, while small (0.7–1.5 μm) and large (2.5–3.2 μm) Nitro821-targeted cells were recovered at all stations and averaged 3.5 cell ml−1. The affiliation of the small Nitro821-targeted cells to UCYN-A was confirmed by 16S and nifH phylogenies in the western Mediterranean Sea. Surprisingly, the larger hybridized cells were not belonging to UCYN-B and C but to plastids of picoeukaryote. NifH gene was not recovered among picoeukaryotes, when rhizobia sequences, including the ones of Bradyrhizobia, were dominating nifH clone libraries from picoplanktonic size fractions. Few sequences of γ-proteobacteria were also detected in central Mediterranean Sea. While low phosphate and iron concentrations could explain the absence of Trichodesmium sp., the factors that prevent the development of UCYN-B and C remain unknown. We also propose that the dominating picoplankters probably developed specific strategies, such as associations with protists or particles and photosynthetic activity to acquire carbon for sustaining diazotrophy. Among UCYN further work will be necessary to understand their suggested role in plastid evolution.
Publisher
Copernicus GmbH
Reference92 articles.
1. Bar Zeev, E., Yogev , T., Man-Aharonovich, D., Kress, N., Herut, B., Beja, O., and Berman-Frank, I.: Seasonal dynamics of the endosymbiotic, nitrogen-fixing cyanobacterium Richelia intracellularis in the eastern Mediterranean Sea, ISME J., 2, 911–923, 2008. 2. Bhattacharya, D., Yoon, H. S., and Hackett, J. D.: Photosynthetic eukaryotes unite: endosymbiosis connects the dots, Bioessays, 25, 50–60, 2003. 3. Berman-Frank, I., Quigg, A., Finkel, Z. V., Irwin, A. J., and Haramaty, L.: Nitrogen-fixation strategies and Fe requirements in cyanobacteria, Limnol. Oceanogr., 52, 2260–2269, 2007. 4. Béthoux, J. P. and Copin-Montégut, G.: Biological fixation of atmospheric nitrogen in the Mediterranean Sea, Limnol. Oceanogr., 31, 1353–1358, 1986. 5. Biegala, I. C., Kennaway, G., Alverca, E., Lennon, J.-F., Vaulot, D., and Simon, N.: Identification of bacteria associated with dinoflagellates (Dinophyceae) Alexandrium spp. using tyramide signal amplification-fluorescent in situ hybridization and confocal microscopy, J. Phycol., 38, 404–411, 2002.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|