Nutrient control of N<sub>2</sub> fixation in the oligotrophic Mediterranean Sea and the impact of Saharan dust events
Author:
Ridame C.,Le Moal M.,Guieu C.,Ternon E.,Biegala I. C.,L'Helguen S.,Pujo-Pay M.
Abstract
Abstract. A better understanding of the factors controlling N2 fixation is a pre-requisite for improving our knowledge on the contribution of N2 fixation in the nitrogen cycling in the Mediterranean Sea. Trace-metal clean nutrient/dust additions bioassays (+P, +PFe, +dust) were performed at three stations located in the western, central and eastern Mediterranean Sea, in summer 2008 as part of the BOUM cruise. The main goals were to investigate the nutrient factor(s) limiting N2 fixation (uptake of 15N2) and to evaluate the potential impact of a Saharan dust event on this biological process during the stratification period. Initially, surface waters at the three stations were DIP-depleted (<10 nM) while the DFe concentrations were relatively high (from 1.2 to 2.3 nM) most likely due to atmospheric iron accumulation in the surface mixed layer. At all stations, Saharan dust input relieved the ambient nutrient limitation of diazotrophic activity as demonstrated by the strong stimulation of N2 fixation (from x2.3 to x5.3). The highest dust stimulation of N2 fixation was recorded at the station located in the eastern basin (x5.3). The responses of diazotrophic activity to nutrients addition were contrasted at the sampled stations suggesting a spatial variability of the factor controlling N2 fixation over the whole basin. At all stations, N2 fixation was not limited by Fe nor co-limited by P and Fe. At the western station, N2 fixation was DIP limited while at the eastern one, N2 fixation was first DIP limited then was limited by one or several chemical element(s) released by dust. Our results demonstrated that a Saharan dust input was able to relieve the successive on-going N2 fixation limitations. Very interestingly, at the station located in the central basin, N2 fixation was not limited by the availability of P yet it was strongly stimulated by dust additions (up to x3.1). A chemical element or a combination of several, released by the added dust may have been responsible for the observed stimulations of N2 fixation. These results indicated that Saharan dust pulses to the surface Mediterranean waters, in addition to P and Fe, could be a source of chemical(s) element(s) that are necessary for metabolic processes and therefore influence rates of N2 fixation.
Publisher
Copernicus GmbH
Reference88 articles.
1. Banerjee, R. and Ragsdale, S. W.: The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes, Ann. Rev. Biochem., 72, 209–247, 2003. 2. Bar-Zeev, E. B., Yogev, T., Man-Aharonovich, D., Kress, N., Herut, B., Beja, O., and Berman-Frank, I.: Seasonal dynamics of the endosymbiotic, nitrogen-fixing cyanobacterium Richelia intracellularis in the eastern Mediterranean Sea, ISME J., 2, 911–923, 2008. 3. Berman-Frank, I., Cullen, J. T., Shaked, Y., Sherrell R. M., and Falkowski, P. G.: Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium, Limnol. Oceanogr., 46(6), 1249–1260, 2001. 4. Berman-Frank, I., Quigg, A., Finkel, Z. V., Irwin, A. J., and Haramaty, L.: Nitrogen-fixation strategies and Fe requirements in cyanobacteria, Limnol. Oceanogr., 52, 2260–2269, 2007. 5. Béthoux, J. P., Morin, P., Chaumery, C., Connan, O., Gentili, B., and Ruiz-Pino, D.: Nutrients in the Mediterranean Sea, mass balance and statistical analysis of concentrations with respect to the environmental change, Mar. Chem., 63, 155–169, 1998.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|