Nutrient control of N<sub>2</sub> fixation in the oligotrophic Mediterranean Sea and the impact of Saharan dust events

Author:

Ridame C.,Le Moal M.,Guieu C.,Ternon E.,Biegala I. C.,L'Helguen S.,Pujo-Pay M.

Abstract

Abstract. A better understanding of the factors controlling N2 fixation is a pre-requisite for improving our knowledge on the contribution of N2 fixation in the nitrogen cycling in the Mediterranean Sea. Trace-metal clean nutrient/dust additions bioassays (+P, +PFe, +dust) were performed at three stations located in the western, central and eastern Mediterranean Sea, in summer 2008 as part of the BOUM cruise. The main goals were to investigate the nutrient factor(s) limiting N2 fixation (uptake of 15N2) and to evaluate the potential impact of a Saharan dust event on this biological process during the stratification period. Initially, surface waters at the three stations were DIP-depleted (<10 nM) while the DFe concentrations were relatively high (from 1.2 to 2.3 nM) most likely due to atmospheric iron accumulation in the surface mixed layer. At all stations, Saharan dust input relieved the ambient nutrient limitation of diazotrophic activity as demonstrated by the strong stimulation of N2 fixation (from x2.3 to x5.3). The highest dust stimulation of N2 fixation was recorded at the station located in the eastern basin (x5.3). The responses of diazotrophic activity to nutrients addition were contrasted at the sampled stations suggesting a spatial variability of the factor controlling N2 fixation over the whole basin. At all stations, N2 fixation was not limited by Fe nor co-limited by P and Fe. At the western station, N2 fixation was DIP limited while at the eastern one, N2 fixation was first DIP limited then was limited by one or several chemical element(s) released by dust. Our results demonstrated that a Saharan dust input was able to relieve the successive on-going N2 fixation limitations. Very interestingly, at the station located in the central basin, N2 fixation was not limited by the availability of P yet it was strongly stimulated by dust additions (up to x3.1). A chemical element or a combination of several, released by the added dust may have been responsible for the observed stimulations of N2 fixation. These results indicated that Saharan dust pulses to the surface Mediterranean waters, in addition to P and Fe, could be a source of chemical(s) element(s) that are necessary for metabolic processes and therefore influence rates of N2 fixation.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3