EXTRACTION OF OPTIMAL SPECTRAL BANDS USING HIERARCHICAL BAND MERGING OUT OF HYPERSPECTRAL DATA

Author:

Le Bris A.,Chehata N.,Briottet X.,Paparoditis N.

Abstract

Abstract. Spectral optimization consists in identifying the most relevant band subset for a specific application. It is a way to reduce hyperspectral data huge dimensionality and can be applied to design specific superspectral sensors dedicated to specific land cover applications. Spectral optimization includes both band selection and band extraction. On the one hand, band selection aims at selecting an optimal band subset (according to a relevance criterion) among the bands of a hyperspectral data set, using automatic feature selection algorithms. On the other hand, band extraction defines the most relevant spectral bands optimizing both their position along the spectrum and their width. The approach presented in this paper first builds a hierarchy of groups of adjacent bands, according to a relevance criterion to decide which adjacent bands must be merged. Then, band selection is performed at the different levels of this hierarchy. Two approaches were proposed to achieve this task : a greedy one and a new adaptation of an incremental feature selection algorithm to this hierarchy of merged bands.

Publisher

Copernicus GmbH

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3