Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS)

Author:

Pappenberger F.,Beven K. J.,Hunter N. M.,Bates P. D.,Gouweleeuw B. T.,Thielen J.,de Roo A. P. J.

Abstract

Abstract. The political pressure on the scientific community to provide medium to long term flood forecasts has increased in the light of recent flooding events in Europe. Such demands can be met by a system consisting of three different model components (weather forecast, rainfall-runoff forecast and flood inundation forecast) which are all liable to considerable uncertainty in the input, output and model parameters. Thus, an understanding of cascaded uncertainties is a necessary requirement to provide robust predictions. In this paper, 10-day ahead rainfall forecasts, consisting of one deterministic, one control and 50 ensemble forecasts, are fed into a rainfall-runoff model (LisFlood) for which parameter uncertainty is represented by six different parameter sets identified through a Generalised Likelihood Uncertainty Estimation (GLUE) analysis and functional hydrograph classification. The runoff of these 52 * 6 realisations form the input to a flood inundation model (LisFlood-FP) which acknowledges uncertainty by utilising ten different sets of roughness coefficients identified using the same GLUE methodology. Likelihood measures for each parameter set computed on historical data are used to give uncertain predictions of flow hydrographs as well as spatial inundation extent. This analysis demonstrates that a full uncertainty analysis of such an integrated system is limited mainly by computer power as well as by how well the rainfall predictions represent potential future conditions. However, these restrictions may be overcome or lessened in the future and this paper establishes a computationally feasible methodological approach to the uncertainty cascade problem.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 254 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3